
FTPEXT2 Working Group A. Bryan
Internet-Draft T. Kosse
Intended status: Standards Track D. Stenberg
Expires: September 28, 2012 March 27, 2012

 File Transfer Protocol HASH Command for Cryptographic Hashes
 draft-ietf-ftpext2-hash-03

Abstract

 The File Transfer Protocol does not offer any method to verify the
 integrity of a transferred file, nor can two files be compared
 against each other without actually transferring them first.
 Cryptographic hashes are a possible solution to this problem. In the
 past, several attempts have been made to add commands to obtain
 checksums and hashes, however none have been formally specified,
 leading to non-interoperability and confusion. To solve these
 issues, this document specifies a new FTP command to be used by
 clients to request cryptographic hashes of files.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft should take place on the FTPEXT2 working
 group mailing list (ftpext@ietf.org). The current issues list is at
 < http://trac.tools.ietf.org/wg/ftpext2/trac/report/1 > and related
 documents (including fancy diffs) can be found at
 < http://tools.ietf.org/wg/ftpext2/ >.

 The changes in this draft are summarized in Appendix C .

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2012.

Bryan, et al. Expires September 28, 2012 [Page 1]

http://trac.tools.ietf.org/wg/ftpext2/trac/report/1
http://tools.ietf.org/wg/ftpext2/
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1 . Example . 3
 2. Document Conventions . 3
 2.1 . Basic Tokens . 4
 2.2 . Server Replies . 4
 3. The HASH Command (HASH) 5
 3.1 . FEAT Command Response for HASH Command 6
 3.2 . OPTS Parameters for HASH 7
 3.3 . Partial File Hashes with RANG 7
 3.4 . User-PI usage of HASH 8
 3.5 . HASH Command Errors 9
 4. IANA Considerations . 9
 5. Implementation Requirements 10
 6. Security Considerations 10
 7. References . 11
 7.1 . Normative References 11
 7.2 . Informative References 12
 Appendix A . Acknowledgements and Contributors 12
 Appendix B . List of Non-standard Cryptographic Hash or
 Checksum Commands and Implementations 12
 Appendix C . Document History 15
 Authors’ Addresses . 16

Bryan, et al. Expires September 28, 2012 [Page 2]

https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

1. Introduction

 The File Transfer Protocol [RFC0959] does not offer any method to
 verify the integrity of a transferred file, nor can two files be
 compared against each other without actually transferring them first.
 Cryptographic hashes are a possible solution to this problem. In the
 past, several attempts have been made to add commands to obtain
 checksums and hashes, however none have been formally specified,
 leading to non-interoperability and confusion. (See Appendix B for
 more information). To solve these issues, this document specifies a
 new FTP command to be used by clients to request cryptographic hashes
 of files. HTTP has a similar feature named Instance Digests
 [RFC3230] which allows a client to request the cryptographic hash of
 a file.

1.1 . Example

 Example of HASH client request:

 C> HASH filename.ext

 Server response to HASH command by client with Positive Completion
 code, the currently selected HASH algorithm, a byte range including
 the start point and end point of the file that was hashed, the
 requested hash of the file, and the pathname of the file:

 S> 213 SHA-1 0-255 80bc95fd391772fa61c91ed68567f09... filename.ext

 Note: In some examples, the number of characters returned for the
 hash of a file has been shortened for line length reasons. These end
 in "...".

2. Document Conventions

 This specification describes conformance of File Transfer Protocol
 Extension for cryptographic hashes.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14 , [RFC2119], as
 scoped to those conformance targets.

 This document also uses notation defined in STD 9, [RFC0959]. In
 particular, the terms or commands "reply", "user", "file", "FTP
 commands", "user-PI" (user protocol interpreter), "server-FTP
 process", "server-PI", "mode", "Image type", "Stream transfer mode",
 "type", "STOR", "RETR", and "ASCII", are all used here as defined

Bryan, et al. Expires September 28, 2012 [Page 3]

https://tools.ietf.org/pdf/rfc0959
https://tools.ietf.org/pdf/rfc3230
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc0959

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 there. The term "pathname" is used as defined in Section 2.2 of
 [RFC3659] .

 In the examples of FTP dialogs presented in this document, lines that
 begin "C> " were sent over the control connection from the user-PI to
 the server-PI, and lines that begin "S> " were sent over the control
 connection from the server-PI to the user-PI. In all cases, the
 prefixes shown above, including the one space, have been added for
 the purposes of this document, and are not a part of the data
 exchanged between client and server.

 Syntax required is defined using the Augmented BNF defined in
 [RFC5234].

2.1 . Basic Tokens

 This document imports the core definitions given in Appendix B of
 [RFC5234] . There definitions will be found for basic ABNF elements
 like ALPHA, DIGIT, SP, etc. To that, the following term is added for
 use in this document.

 TCHAR = VCHAR / SP / HTAB ; visible plus white space

 The VCHAR (from [RFC5234]) and TCHAR rules give basic character types
 from varying sub-sets of the ASCII character set for use in various
 commands and responses.

 Note that in ABNF, string literals are case insensitive. That
 convention is preserved in this document, and implies that FTP
 commands and parameters that are added by this specification have
 values that can be represented in any case. That is, "HASH" is the
 same as "hash", "Hash", "HaSh", etc., and "ftp.example.com" is the
 same as "Ftp.Example.Com", "fTp.eXample.cOm", etc.

2.2 . Server Replies

 Section 4.2 of [RFC0959] defines the format and meaning of replies by
 the server-PI to FTP commands from the user-PI. Those reply
 conventions are used here without change.

 error-response = error-code SP *TCHAR CRLF
 error-code = ("4" / "5") 2DIGIT

 Implementers should note that the ABNF syntax (which was not used in
 [RFC0959]) used in this document, and other FTP related documents,
 sometimes shows replies using the one line format. Unless otherwise

Bryan, et al. Expires September 28, 2012 [Page 4]

https://tools.ietf.org/pdf/rfc3659#section-2.2
https://tools.ietf.org/pdf/rfc3659#section-2.2
https://tools.ietf.org/pdf/rfc5234
https://tools.ietf.org/pdf/rfc5234#appendix-B
https://tools.ietf.org/pdf/rfc5234#appendix-B
https://tools.ietf.org/pdf/rfc5234
https://tools.ietf.org/pdf/rfc0959#section-4.2
https://tools.ietf.org/pdf/rfc0959

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 explicitly stated, that is not intended to imply that multi-line
 responses are not permitted. Implementers should assume that, unless
 stated to the contrary, any reply to any FTP command (including QUIT)
 can be of the multi-line format described in [RFC0959].

 Throughout this document, replies will be identified by the three
 digit code that is their first element. Thus the term "500 reply"
 means a reply from the server-PI using the three digit code "500".

3. The HASH Command (HASH)

 A new command "HASH" is added to the FTP command set to allow the
 client to request the cryptographic hash of a file from a server-FTP
 process.

 The syntax for the HASH command is:

 hash-command = "HASH" SP <pathname>

 As with all FTP commands, the "HASH" command word is case
 independent, and MAY be specified in any character case desired.

 The HASH command keyword MUST be followed by a single space (ASCII
 32) followed by the pathname.

 The pathname argument should reference the same file as other file
 based commands such as STOR or RETR which the same argument would
 reference. The pathname argument MUST represent a file path, not a
 directory path.

 The text returned in response to the HASH command MUST be:

 hash-response = hash-ok / error-response
 hash-ok = "213" SP hashname SP start-point "-" end-point SP filehash SP <pathname> CRLF
 hashname = 1*(hchar)
 start-point = 1*DIGIT
 end-point = 1*DIGIT
 filehash = 1*HEXDIGIT
 hchar = ALPHA / DIGIT / "-" / "_" / "/" / "." / ","

 The <start-point> and <end-point> make up the byte range of the file
 that has been hashed, and MUST be included.

 All hash values MUST be encoded in lowercase hexadecimal format.

Bryan, et al. Expires September 28, 2012 [Page 5]

https://tools.ietf.org/pdf/rfc0959

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 The HASH command uses the currently selected hash algorithm. The
 currently selected hash algorithm can be determined with FEAT or OPTS
 HASH, and changed with OPTS HASH.

 The HASH command is meant to be used for files transmitted in Image
 type mode (TYPE I) and Stream transfer mode (MODE S). The returned
 hash MUST be calculated as if a client were to download the full file
 using TYPE I and MODE S and were to calculate the hash on the
 received octet data. In other words, if a client were to download a
 full file using TYPE I and MODE S and were to calculate the hash on
 the received octet data, it would be identical to the hash returned
 by HASH.

 Depending on multiple conditions, the final server response to a HASH
 command could take long time, so a server could output a "213-" line
 every 5-10 seconds to avoid the connection being idle and silent.

3.1 . FEAT Command Response for HASH Command

 When replying to the FEAT command [RFC2389], a server-FTP process
 that supports the HASH command MUST include a feature line indicating
 that the HASH command is supported, along with a list of all
 supported hash algorithms in a semicolon separated list. The hash
 algorithm that is currently selected MUST be marked with an asterisk.
 The order of hash algorithms is insignificant. This command word is
 case insensitive, and MAY be sent in any mixture of upper or lower
 case, however it SHOULD be sent in upper case. That is, the response
 SHOULD be:

 C> FEAT
 S> 211-Extensions supported:
 S> ...
 S> HASH SHA-256;SHA-512;SHA-1*;MD5
 S> ...
 S> 211 END

 The ellipses indicate place holders where other features may be
 included, and are not required. The one-space indentation of the
 feature lines is mandatory [RFC2389].

 The IANA registry named "Hash Function Textual Names" defines values
 for hash algorithms. Hash names SHOULD be presented in uppercase,
 but comparisons should be case-insensitive, e.g. MD5, md5, Md5 are
 all the same.

Bryan, et al. Expires September 28, 2012 [Page 6]

https://tools.ietf.org/pdf/rfc2389
https://tools.ietf.org/pdf/rfc2389

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 hash-feat = SP "HASH" SP hashlist CRLF
 hashlist = 1*(hashname ["*"] ";")
 hashname = 1*(hchar)
 hchar = ALPHA / DIGIT / "-" / "_" / "/" / "." / ","

3.2 . OPTS Parameters for HASH

 To query the current hash algorithm and to change it, the OPTS
 command as defined in [RFC2389] is used with HASH as the first
 argument.

 If no second argument is passed, OPTS HASH simply returns the
 currently selected hash algorithm.

 C> OPTS HASH
 S> 200 SHA-1

 To change the algorithm, a valid hash algorithm MUST be given as
 second argument. A list of valid hash algorithms is available via
 the FEAT command. If the command is successful, all future calls to
 HASH until the next successful OPTS HASH command or until the session
 is reinitialized (REIN) will use the selected hash algorithm.

 C> OPTS HASH SHA-512
 S> 200 SHA-512

 Requesting unknown or unsupported algorithms produces an error
 response.

 C> OPTS HASH CRC-37
 S> 501 Unknown algorithm, current selection not changed

 The syntax for OPTS HASH:

 hashopts-cmd = "OPTS HASH" [SP hashname] CRLF
 hashopts-response = hashopts-ok / error-response
 hashopts-ok = "200" SP hashname CRLF

3.3 . Partial File Hashes with RANG

 Full files are always hashed by default.

 Partial file hashes, as opposed to full file hashes, are available by
 selecting a byte range with the RANG command [draft-bryan-ftp-range]

Bryan, et al. Expires September 28, 2012 [Page 7]

https://tools.ietf.org/pdf/rfc2389
https://tools.ietf.org/pdf/draft-bryan-ftp-range

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 and then performing the HASH command. To reset the byte range and
 request the HASH of the full file, "RANG 1 0" is issued.

 Since the server can always reject a HASH request, it can opt to
 reject partial hashes if it decides that is the correct behavior.

3.4 . User-PI usage of HASH

 The user-PI issues the FEAT command to query the server-PI about
 which algorithm is currently selected. This also reveals the other
 algorithms that the server supports. In this example, the SHA-1
 algorithm is currently selected, as indicated by the asterisk.

 C> FEAT
 S> 211-Extensions supported:
 S> ...
 S> HASH SHA-256;SHA-512;SHA-1*;MD5
 S> ...
 S> 211 END

 OPTS HASH is an alternative method for the user-PI to query the
 server-PI about which algorithm is currently selected.

 C> OPTS HASH
 S> 200 SHA-1

 In this example, we wish to select SHA-256, a different algorithm.

 C> OPTS HASH SHA-256
 S> 200 SHA-256

 The user-PI requests a byte range of 0-49 with the RANG command, then
 immediately followed by a request of the cryptographic hash of a file
 with HASH command. Server-PI replies with the Positive Completion
 code, the currently selected HASH algorithm, the byte range, the
 requested hash of the file, and the pathname of the file.

 C> RANG 0 49
 C> HASH filename.ext
 S> 213-
 S> 213 SHA-256 0-49 169cd22282da7f147cb491e559e9dd... filename.ext

 Here, no RANG command is issued before HASH, so by default the whole
 file is hashed. The user-PI requests the cryptographic hash of a

Bryan, et al. Expires September 28, 2012 [Page 8]

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 file with HASH command. Server-PI replies with the Positive
 Completion code, the currently selected HASH algorithm, the requested
 hash of the file, and the pathname of the file.

 C> HASH filename.ext
 S> 213-
 S> 213 SHA-256 0-99 f0ad929cd259957e160ea442eb8098... filename.ext

 Client downloads file. Client hashes the downloaded file and
 compares its hash to the hash obtained from the server. The HASH
 command could also be used to verify that an uploaded file has the
 same hash as the local file.

3.5 . HASH Command Errors

 The server-PI SHOULD reply with a 450 reply if the server is busy,
 e.g. already hashing other files yet inviting the client to retry in
 the future.

 Where the HASH command is unrecognized or there is a syntax error in
 parameters or arguments, a 500 or 501 reply can be sent by the
 server-PI, as specified in [RFC0959].

 The server-PI SHOULD reply with a 501 reply to the OPTS HASH command
 if the user-PI has requested an unknown or unsupported algorithm.

 The server-PI SHOULD reply with a 550 reply if the HASH command is
 used on a file that can not be found.

 The server-PI SHOULD reply with a 551 reply if the server-PI can not
 calculate the hash of a file because it is unable to deliver the file
 with TYPE I and MODE S.

 The server-PI SHOULD reply with a 552 reply if the user is not
 allowed to use the HASH command.

 The server-PI SHOULD reply with a 553 reply if the user requests the
 HASH of a directory, which is not allowed.

 The server-PI SHOULD reply with a 556 reply if the HASH command is
 used on a file that cannot be processed for policy reasons. (For
 example, if the file size exceeds the server’s hashing policy.)

4. IANA Considerations

 This new command is added to the "FTP Commands and Extensions"

Bryan, et al. Expires September 28, 2012 [Page 9]

https://tools.ietf.org/pdf/rfc0959

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 registry created by [RFC5797].

 Command Name: HASH

 Description: Cryptographic Hash of a file

 FEAT String: HASH

 Command Type: Service execution

 Conformance Requirements: Optional

 Reference: This specification

5. Implementation Requirements

 All conforming implementations MUST at least support the SHA-1
 algorithm [FIPS-180-3]. Implementations SHOULD NOT make any
 algorithm the default that is known to be weaker than SHA-1. Support
 for any additional algorithms is OPTIONAL.

6. Security Considerations

 The server MUST only allow the HASH command to be processable for
 files which the logged in user has a right to access.

 Implementing the HASH command may impose a considerable load on the
 server, which could lead to denial-of-service attacks. Servers have,
 however, implemented this for many years, without significant
 reported difficulties. On an affected server a malicious user could,
 for example, continuously send HASH commands over multiple
 connections and thus consume most of the FTP server’s resources,
 leaving little room for other operations. To mitigate this risk, a
 server MAY cache the calculated hashes so that the hash of a file is
 only calculated once even if multiple hash requests are sent for that
 file, provided it updates or invalidates the cached hash when the
 content of the corresponding file changes. A server may refuse to
 process a HASH command for many reasons, one of which may be a
 suspected denial-of-service attack. A client MUST be able to
 understand that refusal to process HASH commands may be transient (if
 indicated by a 450 response) and MAY be honoured later if the server
 so decides. A client MUST allow that a HASH command might take a
 reasonably long time to complete.

 Server operators might wish to allow the HASH command but restrict
 its use to certain files, for example, if the file size exceeds the

Bryan, et al. Expires September 28, 2012 [Page 10]

https://tools.ietf.org/pdf/rfc5797

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 server’s hashing policy. A client MUST be able to understand that
 refusal to process HASH commands may be permanent (if indicated by a
 556 response) and will not be honoured later.

 In addition, the HASH command can be used to draw conclusions about
 the contents of a file. If the hash of a file on some server matches
 the hash of some known file, then both files are likely identical.
 By uploading a file, running HASH against it and running HASH against
 another file location, the client could infer some filesystem
 deployment information (e.g. that there is a logical link between a
 pair of directories in the tree). This is probably not an issue if
 the user has access to both branches of the directory tree, but there
 is the possibility that this information is exposable. To prevent
 this scenario it suffices to limit use of the HASH command to users
 who uploaded the file or would already be able to download the file.

 This mechanism simply allows the FTP protocol to expose HASH values
 of files, using the currently chosen mechanism, accessible to the
 server by the client. The suitability or otherwise of a specific
 hash algorithm for a specific purpose is an implementation decision.

7. References

7.1 . Normative References

 [FIPS-180-3]
 National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-3,
 October 2008.

 [RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 0959 , October 1985.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

 [RFC2389] Hethmon, P. and R. Elz, "Feature negotiation mechanism for
 the File Transfer Protocol", RFC 2389 , August 1998.

 [RFC3659] Hethmon, P., "Extensions to FTP", RFC 3659 , March 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234 , January 2008.

 [draft-bryan-ftp-range]
 Bryan, A., Tsujikawa, T., and D. Stenberg, "File Transfer
 Protocol RANG Command for Byte Ranges",

Bryan, et al. Expires September 28, 2012 [Page 11]

https://tools.ietf.org/pdf/rfc0959
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/rfc2389
https://tools.ietf.org/pdf/rfc3659
https://tools.ietf.org/pdf/rfc5234
https://tools.ietf.org/pdf/draft-bryan-ftp-range

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 draft-bryan-ftp-range-04 (work in progress).

7.2 . Informative References

 [RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
 RFC 3230 , January 2002.

 [RFC5797] Klensin, J. and A. Hoenes, "FTP Command and Extension
 Registry", RFC 5797 , March 2010.

 [draft-twine-ftpmd5]
 Twine, J., "The MD5 and MMD5 FTP Command Extensions",
 draft-twine-ftpmd5-00 (work in progress), May 2002.

Appendix A . Acknowledgements and Contributors

 This document is a product of the FTPEXT2 working group of the IETF.

 Thanks to John C. Klensin, Alfred Hoenes, James Twine, Robert
 McMurray, Mathias Berchtold, Tatsuhiro Tsujikawa, Paul Ford-
 Hutchinson, and Robert Oslin.

 Portions of [RFC3659] were wholly reused in this document.

Appendix B . List of Non-standard Cryptographic Hash or Checksum
 Commands and Implementations

 [[to be removed by the RFC editor before publication as an RFC.]]

 A number of similar checksum or hash commands exist, but are not
 formally specified, leading to non-interoperability and confusion.
 The commands, any specifications, and relevant details:

 o CKSM: GridFTP v2 Protocol Description
 http://www.ogf.org/documents/GFD.47.pdf Usage: OPTS CKSM
 <algorithm> CRLF. Supports ADLER32, MD5, CRC32.
 o MD5/MMD5: Expired Internet Draft [draft-twine-ftpmd5] from 2002.
 Usage: MD5 <filepath> Algorithm specific command. Response codes:
 251 positive completion, 500 Command Not Recognized, 502 Command
 Not Implemented, 504 Command Not Implemented for the Specified
 Argument.
 o SITE CHECKSUM: Usage: SITE check_login SP CHECKSUM SP pathname
 CRLF. Supports CRC32 and MD5.
 o SITE SHOHASH: Usage: site shohash [filename]. Supports MD5.
 Response codes: 200 positive completion.

Bryan, et al. Expires September 28, 2012 [Page 12]

https://tools.ietf.org/pdf/draft-bryan-ftp-range-04
https://tools.ietf.org/pdf/rfc3230
https://tools.ietf.org/pdf/rfc5797
https://tools.ietf.org/pdf/draft-twine-ftpmd5
https://tools.ietf.org/pdf/draft-twine-ftpmd5-00
https://tools.ietf.org/pdf/rfc3659
http://www.ogf.org/documents/GFD.47.pdf
https://tools.ietf.org/pdf/draft-twine-ftpmd5

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 o XCRC: By GlobalSCAPE in 2001. http://help.globalscape.com/help/
 secureserver2/File_Integrity_Checking.htm Usage: XCRC <filename>
 SP EP. SP is starting point and EP is ending point in bytes and
 are optional parameters. Algorithm specific command. Response
 codes: 250 positive completion, 450 Requested file action not
 taken. (File is busy), 550 Requested action not taken. (File not
 found, no read permission, SP or EP not correct).
 o XMD5: XMD5 <filename> SP EP. Similar to XCRC. Algorithm specific
 command.
 o XSHA, XSHA1, XSHA256, XSHA512: Usage similar to XCRC, although
 SP/EP usage unknown. Algorithm specific commands.

 An incomplete list of FTP clients and servers that have implemented
 these commands:

 o Akamai NetStorage (supports SITE CHKHSH/SITE SHOHASH) p17-18
 http://pigdogslow.dyndns.org/NetStorage_UserGuide.pdf
 o Apache Ftp Server (supports MD5/MMD5 from draft-twine-ftpmd5)
 http://cwiki.apache.org/FTPSERVER/documentation.html
 o Backup4all Pro (supports XCRC)
 o Backup to FTP (supports XCRC)
 o BlackMoon FTP Server (supports XCRC)
 http://www.blackmoonftpserver.com/portal/readmore/features.html
 o C.P.A. Secure (supports XCRC)
 http://www.cpasecure.com/CPASecureVsSecureFTP.html
 o Cerberus FTP server (supports XCRC, XMD5, XSHA1, XSHA256, XSHA512)
 http://www.softpedia.com/progChangelog/
 Cerberus-FTP-Server-Changelog-1904.html
 o Core FTP Pro (supports XCRC)
 o Cross FTP Server (supports MD5/MMD5)
 o FileCOPA FTP Server (supports XCRC, XMD5, XSHA1)
 http://www.filecopa-ftpserver.com/features.html
 o File Watchdogs FTP Server (supports XCRC, XMD5, XSHA1, XSHA256,
 XSHA512)
 http://www.filewatchdogs.com/ftpsitehosting/help/15559.htm
 o FireFTP (supports XMD5, XSHA1)
 http://fireftp.mozdev.org/features.html
 o FTP Daemon (supports SITE CHECKMETHOD/SITE CHECKSUM)
 http://www.pro-bono-publico.de/projects/ftpd.html
 o FTP Voyager (supports XCRC) http://www.ftpvoyager.com/XCRC.asp
 o Gene6 FTP Server
 http://www.g6ftpserver.com/en/information#features
 o GlobalSCAPE’s Secure FTP Server / EFT Server / CuteFTP clients
 (supports XCRC)
 o Globus FTP client / Globus Toolkit(supports CKSM) http://
 www.globus.org/toolkit/releasenotes/3.2.0/gridftp_notes.html

Bryan, et al. Expires September 28, 2012 [Page 13]

http://help.globalscape.com/help/secureserver2/File_Integrity_Checking.htm
http://help.globalscape.com/help/secureserver2/File_Integrity_Checking.htm
http://pigdogslow.dyndns.org/NetStorage_UserGuide.pdf
https://tools.ietf.org/pdf/draft-twine-ftpmd5
http://cwiki.apache.org/FTPSERVER/documentation.html
http://www.blackmoonftpserver.com/portal/readmore/features.html
http://www.cpasecure.com/CPASecureVsSecureFTP.html
http://www.softpedia.com/progChangelog/Cerberus-FTP-Server-Changelog-1904.html
http://www.softpedia.com/progChangelog/Cerberus-FTP-Server-Changelog-1904.html
http://www.filecopa-ftpserver.com/features.html
http://www.filewatchdogs.com/ftpsitehosting/help/15559.htm
http://fireftp.mozdev.org/features.html
http://www.pro-bono-publico.de/projects/ftpd.html
http://www.ftpvoyager.com/XCRC.asp
http://www.g6ftpserver.com/en/information#features
http://www.globus.org/toolkit/releasenotes/3.2.0/gridftp_notes.html
http://www.globus.org/toolkit/releasenotes/3.2.0/gridftp_notes.html

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 o GoldenGate FTP (Ftp Full Java Server) (supports XCRC, XMD5, XSHA1)
 o IceWarp FTP Server http://www.icewarp.com/products/ftp_server/
 o ICS FTP client (supports XCRC, XMD5)
 http://www.magsys.co.uk/delphi/magics.asp
 o ioFTPD (supports XCRC)
 o JAFS (supports XCRC and MD5)
 http://www.sbbi.net/site/jafs/features.html
 o Kellerman FTP (supports XCRC)
 http://sharptoolbox.com/tools/kellerman-ftp
 o Limagito FTP server (supports XCRC, XMD5, XSHA1)
 http://www.limagito.com/file-mover-features.html
 o Lobster IntegrationServer (supports XCRC, XSHA1, XMD5; all with SP
 and EP).
 o MOVEit DMZ (supports XSHA1)
 o Nofeel FTP server (supports XCRC, XMD5, XSHA1)
 http://www.nftpserver.com/history.php
 o Null FTP (supports XCRC, XMD5, XSHA)
 http://www.sharewareconnection.com/null-ftp-client-pro.htm
 o Orenosv FTP Client (supports XCRC, XMD5)
 http://www.orenosv.com/orenosv/ftpcli_en.html
 o ProFTPD module mod_digest (supports XCRC, XMD5, XSHA1, SHA256)
 http://www.smartftp.com/oss/proftpd/mod_digest.html
 o PSFTPd Secure FTP Server (supports XCRC, XMD5, XSHA)
 http://www.psftp.de/psftpd_fo.php
 o Quick ’n Easy FTP Server (supports XCRC) http://
 www.pablosoftwaresolutions.com/html/
 quick__n_easy_ftp_server_pro.html
 o RaidenFTPD32 FTP server (supports XCRC, XMD5)
 o Robo-FTP Server (supports XCRC, XMD5, XSHA1)
 http://kb.robo-ftp.com/change_log/show/61
 o SyncBackPro and SyncBackSE (supports XCRC)
 http://www.2brightsparks.com/syncback/sbpro-changes.html
 o Secure FTP Factory (supports XCRC)
 o Serv-U FTP Server (supports XCRC) http://www.serv-u.com/help/
 serv_u_help/additional_ftp_commands_supported_by_serv_u.htm
 o SmartFTP client (supports XCRC, XMD5, XSHA, CKSM)
 http://www.smartftp.com/features/
 o Starksoft Ftp Component for .NET / Mono (supports XCRC, XMD5,
 XSHA1) http://www.starksoft.com/prod_ftp.html
 o Titan FTP Server (supports XCRC)
 o Turbo FTP (supports XCRC)
 o WISE-FTP (supports XCRC) http://www.wise-ftp.com/news/
 o WS_FTP client / server (supports XSHA1, server also XMD5, XSHA1,
 XSHA256, XSHA512) http://ipswitchft.custhelp.com/app/answers/
 detail/a_id/671/kw/xmd5/r_id/166/sno/1
 o wuftpd (supports SITE CHECKMETHOD/SITE CHECKSUM)

Bryan, et al. Expires September 28, 2012 [Page 14]

http://www.icewarp.com/products/ftp_server/
http://www.magsys.co.uk/delphi/magics.asp
http://www.sbbi.net/site/jafs/features.html
http://sharptoolbox.com/tools/kellerman-ftp
http://www.limagito.com/file-mover-features.html
http://www.nftpserver.com/history.php
http://www.sharewareconnection.com/null-ftp-client-pro.htm
http://www.orenosv.com/orenosv/ftpcli_en.html
http://www.smartftp.com/oss/proftpd/mod_digest.html
http://www.psftp.de/psftpd_fo.php
http://www.pablosoftwaresolutions.com/html/
http://www.pablosoftwaresolutions.com/html/
http://kb.robo-ftp.com/change_log/show/61
http://www.2brightsparks.com/syncback/sbpro-changes.html
http://www.serv-u.com/help/serv_u_help/additional_ftp_commands_supported_by_serv_u.htm
http://www.serv-u.com/help/serv_u_help/additional_ftp_commands_supported_by_serv_u.htm
http://www.smartftp.com/features/
http://www.starksoft.com/prod_ftp.html
http://www.wise-ftp.com/news/
http://ipswitchft.custhelp.com/app/answers/detail/a_id/671/kw/xmd5/r_id/166/sno/1
http://ipswitchft.custhelp.com/app/answers/detail/a_id/671/kw/xmd5/r_id/166/sno/1

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 o wzdFTPd (supports XCRC, XMD5)
 http://www.wzdftpd.net/wiki/index.php/Commands
 o Zalman FTP Client (supports XCRC)
 http://www.zalmansoftware.com/download.html
 o zFTPServer

Appendix C . Document History

 [[to be removed by the RFC editor before publication as an RFC.]]

 Known issues concerning this draft:
 o Should HASH use "MLSx style" responses? S> 213 Hash.SHA-
 1=80bc95fd3...;Range=0-199; filename.ext

 draft-ietf-ftpext2-hash-03 : March 27, 2012
 o Editorial nits.

 draft-ietf-ftpext2-hash-02 : July 28, 2011
 o Refinements.

 draft-ietf-ftpext2-hash-01 : February 1, 2011
 o Partial file hashes with RANG command. Mandatory byte range in
 response. "213-" to avoid timeout.

 draft-ietf-ftpext2-hash-00 : November 24, 2010
 o FTPEXT2 Working Group.

 draft-bryan-ftp-hash-08 : October 25, 2010.
 o New server reply 556: Servers that allow HASH but restrict its use
 to certain files.

 draft-bryan-ftp-hash-07 : August 5, 2010.
 o Clarify that HASH is only for files, not directories.

 draft-bryan-ftp-hash-06 : July 9, 2010.
 o Change server reply format.

 draft-bryan-ftp-hash-05 : June 29, 2010.
 o Add Basic Tokens and Server Replies subsections from RFC 3659 .

 draft-bryan-ftp-hash-04 : June 11, 2010.
 o User-PI usage and command errors sections updated.

 draft-bryan-ftp-hash-03 : May 21, 2010.
 o List of non-standard checksum and hash commands and their
 implementations.

Bryan, et al. Expires September 28, 2012 [Page 15]

http://www.wzdftpd.net/wiki/index.php/Commands
http://www.zalmansoftware.com/download.html
https://tools.ietf.org/pdf/draft-ietf-ftpext2-hash-03
https://tools.ietf.org/pdf/draft-ietf-ftpext2-hash-02
https://tools.ietf.org/pdf/draft-ietf-ftpext2-hash-01
https://tools.ietf.org/pdf/draft-ietf-ftpext2-hash-00
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-08
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-07
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-06
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-05
https://tools.ietf.org/pdf/rfc3659
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-04
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-03

Internet-Draft FTP HASH Command for Cryptographic Hashes March 2012

 draft-bryan-ftp-hash-02 : April 16, 2010.
 o Error codes section.

 draft-bryan-ftp-hash-01 : April 7, 2010.
 o Changing HASH algorithm with OPTS.
 o Reference RFC 5797 and add IANA Considerations section.
 o Informative Reference to expired Internet Draft
 (draft-twine-ftpmd5) which attempted to address this issue (it
 only supported one hash, MD5).

 draft-bryan-ftp-hash-00 : October 19, 2009.
 o Initial draft.

Authors’ Addresses

 Anthony Bryan
 Pompano Beach, FL
 USA

 Email: anthonybryan@gmail.com
 URI: http://www.metalinker.org

 Tim Kosse

 Email: tim.kosse@filezilla-project.org
 URI: http://filezilla-project.org/

 Daniel Stenberg

 Email: daniel@haxx.se
 URI: http://www.haxx.se/

Bryan, et al. Expires September 28, 2012 [Page 16]

https://tools.ietf.org/pdf/draft-bryan-ftp-hash-02
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-01
https://tools.ietf.org/pdf/rfc5797
https://tools.ietf.org/pdf/draft-twine-ftpmd5
https://tools.ietf.org/pdf/draft-bryan-ftp-hash-00
http://www.metalinker.org/
http://filezilla-project.org/
http://www.haxx.se/

