

LATTE
(Los Alamos Transferable Tight-binding for Energetics)

LA-CC 10-004

E. J. Sanville, A. M. N. Niklasson, N. Bock, J. D. Coe, S. P. Rudin, M. J. Cawkwell

Theoretical Division
Los Alamos National Laboratory

User Guide
November 2010

LA-UR 10-01978

 2 

Copyright 2010. Los Alamos National Security, LLC. This material was produced under
U.S. Government contract DE-AC52-06NA25396 for Los Alamos National Laboratory
(LANL), which is operated by Los Alamos National Security, LLC for the U.S.
Department of Energy. The U.S. Government has rights to use, reproduce, and distribute
this software. NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL
SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is
modified to produce derivative works, such modified software should be clearly marked,
so as not to confuse it with the version available from LANL.

Additionally, this program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2.0 of the License. Accordingly, this program is distributed in the
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

 3 

I. Introduction

LATTE is a code written in FORTRAN90 for performing self-consistent charge transfer
tight-binding (SCC-TB) calculations of total energies and the forces action on atoms in
molecules and solids. The development of LATTE is geared principally toward large-
scale, long duration, microcanonical molecular dynamics simulations of organic
molecular materials.
 We identified SCC-TB as the best candidate for the atomistic simulation of
organic molecular materials because it is the simplest explicitly quantum mechanical
method that describes all the inter- and intramolecular interactions at play in these
systems:

i) the making and breaking of intramolecular covalent bonds,
ii) charge transfer between species of different electronegativities and long range

electrostatic interactions, and
iii) ‘medium’-range van der Waals interactions.

Furthermore, as all chemists know, spin-polarization or spin unrestricted calculations are
essential if one is going to make or break covalent bonds. Hence, we have the option to
run spin-polarized SCC-TB calculations if we want to simulate ‘chemistry’.

II. Essential Theory

 The most time consuming step in first principles self-consistent field (SCF) or
density functional theory (DFT) calculations is the computation of the matrix elements of
the Fockian or Hamiltonian. TB-based schemes can be orders of magnitude faster than
first principles methods since the terms that enter the TB Hamiltonian are approximated
and parameterized rather than computed exactly.1-5 Nevertheless, methods based on the
TB approximation remain explicitly quantum mechanical since the time-independent
Schrödinger equation is still constructed and solved.

The SCC-TB formalism is derived from an expansion of the Kohn-Sham
equations to second order in charge fluctuations about the self-consistent ground state.
This procedure has been described in detail by Elstner,6 Finnis,4, 7 and Esfarjani.8 Our
work follows that of Elstner closely, but with the exception that we employ a minimal
basis of a real, complete, orthonormal set of free-atom-like orbitals. In the following we
present a spin-polarized SCC-TB model that we find to be necessary to capture charge
redistribution upon the scission of covalent bonds and the formation of radicals.

The spin-independent SCC-TB Hamiltonian, H, is written as a sum of a charge-
independent Slater-Koster TB Hamiltonian,9 H (1) , and a charge dependent Hamiltonian,
H (2) :

Hiα , jβ = Hiα , jβ
(1) + γ ikqkδ ijδαβ

k=1

N

∑ (1)

 4 

where i and j label atoms, α and β orbitals (s, px, py, and pz), γ ii is the Hubbard U for
species i, γ ik → 1 / Rik at long range, where Rik is the scalar distance between atoms i
and k, and at short range is a screened Coulomb potential,6 qk is the partial Mulliken
charge on atom k, δ xy the Kronecker delta, and N the total number of atoms. The total
energy relative to that of isolated atoms is written:

Etotal = 2tr[(ρ − ρ0)H]−1 2 γ ijqiqj + Epair

i, j
∑ (2)

where in the first term a factor of two is included to account for spin degeneracy, tr[X]
denotes the trace of matrix X, ρ is the density matrix calculated self-consistently from
the SCC-TB Hamiltonian and the electronic occupancy, and ρ0 the density matrix for
isolated atoms. The second term is the so-called double counting correction for the
electrostatic potential, and Epair is a sum of pair potentials that is strongly repulsive at
short range and which at long range provides −1 R6 van der Waals-like interactions.

An explicit dependence of the total energy on electron spin can be built into the
SCC-TB formalism through the introduction of two spin populations and the addition of a
spin dependent Hamiltonian, H (3) .10 The Hamiltonians for the up and down spins
populations are

H ↑ = H (1) + H (2) + H (3) (3)

and

H ↓ = H (1) + H (2) − H (3), (4)

respectively. The spin-dependent Hamiltonian is given by:

Hiα , jβ

(3) = 1 2 Il ,l '' + Il ',l ''()mi;l ''δ ijδαβ
l '∈i
∑

l∈i
∑ (5)

where l is the azimuthal quantum number, Il ,l ' an energy parameter related to the splitting
between molecular orbitals as a result of spin polarization, and mi;l the difference
between the number of electrons of up and down spin on the l orbitals of atom i. The total
energy relative to isolated atoms within the spin-polarized formalism is written:

Etotal = tr ρ − ρ0() H (1) + H (2)()⎡⎣ ⎤⎦ −1 2 γ ijqiqj

i, j
∑ +1 2 mi;lmi;l ' − mi;l

0 mi;l '
0() Il ,l ' + Epair

l ,l '
∑

i
∑

 (6)

where mi;l

0 is the difference between the number of electrons of up and down spin on the

l orbitals of isolated atoms, and ρ = ρ↑ + ρ↓ where the density matrices for spin up and

 5 

down electrons are calculated from the Hamiltonians in Eqns (3) and (4), respectively,
subject to the condition that the value of tr[ρ↑ + ρ↓] is equal to the total number of
electrons.

The SCC-TB equations must be solved self-consistently since the SCC-TB
Hamiltonian depends on partial charges and spin-difference densities that are themselves
extracted from the density matrix. In the case of spin-polarized calculations these are,

qi = ρiα ,iα − ρiα ,iα

0⎡⎣ ⎤⎦
α∈i
∑ (7)

and

mi;l = ρiα ,iα

↑ − ρiα ,iα
↓⎡⎣ ⎤⎦

α∈l
∑ . (8)

However, once the self-consistent density matrix has been evaluated, the force acting
upon atoms within the system can be computed using the Hellmann-Feynman theorem,4,

11 i.e.,

Fk = −tr ρ ∂H (1)

∂Rk

⎡

⎣
⎢

⎤

⎦
⎥ −
1
2

qiqj
∂γ ij

∂Rk

−
∂Epair
∂Rk

.
j≠ i
∑

i
∑ (9)

III. Implementation of SCC-TB into LATTE

III.A Slater-Koster Hamiltonian

The matrix elements on the leading diagonal of the Slater-Koster9 TB
Hamiltonian, H (1) , are the energies of the valence orbitals on free atoms. The off-
diagonal elements of H (1) , commonly referred to as hopping integrals, depend on
interatomic distance and the angular character of the overlapping valence orbitals. The
hopping integrals take the form of angular dependent combinations of a small number
fundamental bond integrals. The radial dependence of the hopping integrals is contained
within the bond integrals, hll 'τ (R) , where τ = σ, π, δ etc. The angular dependencies of the
hopping integrals for sp-valent elements have been tabulated,9 thus one must only
represent and parameterize the fundamental bond integrals. We have chosen to represent
the bond integrals by Goodwin-Skinner-Pettifor functions,12, 13 S(R) , such that
h(R) = h(R0)S(R) , where

S(R) = R0
R

⎛
⎝⎜

⎞
⎠⎟
n

exp n
R0
Rc

⎛
⎝⎜

⎞
⎠⎟

nc

−
R
Rc

⎛
⎝⎜

⎞
⎠⎟

nc⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (10)

where R0 is typically an equilibrium bond length, and n, nc , and Rc are fitting
parameters. A polynomial of the form

 6 

 t(R) = Bm (R − Rs)
m ,

m=0

5

∑ (11)

where B0 to B5 are fitting parameters, is added to the bond integrals at R = Rs to ensure a
smooth cut-off at a specified distance.

A total of 45 parameters must be defined in order to construct H (1) for
hydrocarbons. We find that each of these can be fitted by matching in a least squares
sense the energies of occupied and unoccupied molecular orbitals calculated using SCC-
TB and DFT. The radial dependence of the bond integrals can be extracted by repeating
this procedure for a series of homogeneously dilated molecules.

III.B Electrostatic Hamiltonian

Only one fitting parameter per element is required in the construction of H (2) ,
namely the Hubbard U. The Hubbard U can be estimated using experimental values for
the ionization potential, I, and the electron affinity, A, of each element, U ≈ I − A, which
we apply without modification. The Coulomb potential is screened at short range using
the formalism of Elstner6 and we use the Ewald method14 to compute the long-range
contribution to the electrostatic potential.

III.C Pairwise Interactions

We construct a sum of pair potentials for each element pair to provide strong
repulsion at short range and weak attraction that mimics van der Waals bonding at long
range. The pairwise term in the expression for the total energy takes the form

Epair =
1
2

Φ(Rij)
j≠ i
∑

i
∑ (12)

where

Φ =

Ak Rk − Rij()3θ Rk − Rij⎡⎣ ⎤⎦;
k=1

4

∑ Rij ≤ RA

t join (Rij); RA < Rij ≤ RB

−C Rij
6; RB < Rij ≤ Rs

tcut (Rij); Rs < Rij ≤ Rcut .

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

 (13)

The first term is the short-range part of the pair potential where the node points, Rk , and
pre-factors, Ak , are fitting parameters, and θ[x] is the Heaviside step function.13 The

 7 

adjustable parameters Rk and Ak are fitted such that the overall model reproduces
cohesive energies, and the length and force constants of covalent bonds calculated using
first principles methods. The third term provides van der Waals-like interactions and the
adjustable parameter, C, is taken from the literature for each element pair.15 The second
term, t join , takes the same form as Eqn. (11) and is used to smoothly join the short range
pair potential to the long range van der Waals-like pair potential over the range
RA < R ≤ RB . The final term applies a smooth cut-off to the pair potential.

III.D Spin-dependent Hamiltonian

The adjustable parameters that enter H (3) affect the magnitude of the relative
shifts in energy of the molecular orbitals for the two spin channels. The values of Il ,l ' for
carbon and hydrogen have been estimated using spin-polarized DFT calculations of the
energies of the molecular orbitals of free atoms and molecules that possess at least one
unpaired spin.

IV. Compiling LATTE

A serial version of LATTE can be compiled on a laptop or desktop equipped with
a FORTRAN90 compiler and pre-compiled LAPACK/BLAS libraries. The GNU gfortran
compiler works very well and we have also tested the more heavily optimized PGI
(pgf90), Intel (ifort), and Pathscale (pathf90) compilers. Furthermore, the
LAPACK/BLAS libraries can either be downloaded free of charge
(http://www.netlib.org/lapack) and compiled locally, or one can try the heavily optimized
versions such as ACML from PGI, MKL from Intel, the auto-tuned ATLAS, or GOTO
BLAS. It is well worthwhile testing a number of linear algebra library and compiler
combinations since it is possible to obtain very significant speed-ups on fixed hardware.
Users should note that commercial compilers and libraries may improve performance but
publically available software (gfortran: http://gcc.gnu.org/fortran/, LAPACK/BLAS:
http://www.netlib.org/lapack/LICENSE) on a regular desktop running LINUX provide
identical accuracy and comparable performance.
 If you are going to use the CUDA code on a NVIDIA graphics card, you must
download the SDK from NVIDIA to get the nvcc compiler, CUBLAS library, and other
essential libraries.

Note added 11/9/2010: We have noticed absolutely awful performance from the BLAS
level 3 SGEMM routine when gfortran is the F90 compiler. Please beware – bad
performance may not always be our fault.

IV.A makefile.h

To compile LATTE, simply edit makefile.h in the src directory to specify your
compilers and the location of your libraries. In this file we also specify pre-processor
options that select whether single or double precision code will be compiled and whether
to link to the CUDA code in MATRIX.

 8 

PRECISION = DOUBLE: run in double precision arithmetic.
 = SINGLE: run in single precision arithmetic.

GPUOPT = ON: compile in the CUDA code for SP2 density matrix purification in

MATRIX. The library libmatrix_cuda.a must be compiled for LATTE
is compiled.
= OFF: compile only CPU code.

CPP Selects the c preprocessor and passes the preprocessor options.

FC Your preferred FORTRAN90 compiler.

FCL Linker flags for the F90 compiler. Pass the flag to compile the OpenMP

parts of the code here.

FFLAGS Optimization flags for the F90 compiler. Our testing to date shows that it

is safe to ‘max-out’ these since LATTE is far from exotic.

GPU_LINKFLAG These flags are required to for the F90 code to talk to the C++ code

in MATRIX when compiling the hybrid CPU/GPU code.

LIB Specify your preferred LAPACK and BLAS implementations and the path

to them.

GPU_LIB Specify the path to libmatrix_cuda.a and the CUDA libraries.

Then, simply run ‘make’ in the main directory to compile. If the compilation is
successful, you will obtain an executable in the main directory whose name reflects the
preprocessor options defined in makefile.h.

Compilation and link flags for LATTE

PRECISION = SINGLE
GPUOPT = OFF
CPP = cpp -P -C -D$(PRECISION)PREC -DGPU$(GPUOPT) -traditional < $*.F90 > $*.f90
FC = ifort
FCL = $(FC) -openmp
FFLAGS = -O3 -openmp
LINKFLAG =
GPU_LINKFLAG = -L../MATRIX -lgfortran -lstdc++
LIB = -L/opt/ACML/acml-4.3.0/ifort64_mp/lib -lacml_mp
GPU_LIB = -L../MATRIX -lmatrix_cuda -L/usr/local/cuda/lib64 -lcublas -lcudart

 9 

IV.B Parallel processing

We are working toward meshing LATTE with MPI distributed memory,
parallelized linear algebra libraries (ScaLAPACK and PBLAS). Makefiles and
instructions will be added once these features are merged into the publically available
LATTE distribution. We also intend to release parallelized versions of the Ewald sums
for the long-range electrostatics.
 While a distributed memory version LATTE remains under development, you can
run the code on a multi-core shared memory desktop or compute node. Most high
performance math libraries (ACML, MKL, and GOTO) are threaded and by setting
OMP_NUM_THREADS accordingly, LAPACK and BLAS calls can be run in parallel.
Moreover, we have threaded using OpenMP all of the compute-intensive triple loops in
the code. These capabilities can be activated by passing to your F90 compiler the
appropriate flag (-fopenmp for gfortran, -openmp for ifort, and –mp for pgf90, etc). We
have seen a good, but not perfect, scaling of the threaded code up to about 8 cores, with
deteriorating performance gains at 16 cores. Nevertheless, this approach will reduce
significantly the wall time for your runs with no loss of accuracy.

IV.C GPU/CUDA acceleration

LATTE is GPU-enabled! Before the user gets carried away, there are a few
provisions. First, you must have a NVIDIA graphics card with a compute capability of at
least 1.3 if you plan to run double and single precision arithmetic on it. If you don’t own
suitable hardware, Fermi-based GPUs from NVIDIA such as a GTX480 are very
affordable. Slightly more thought must go into powering them – ensure your power
supply has a sufficiently high rating (something of the order of 1kW) and that you have
sufficient connectors (Fermi’s have 4 power inputs, I think). You may, like us, have to
build a dedicated machine to ensure the power supply and motherboard can handle the
GPU. Once your hardware is up to ‘spec’, download the NVIDIA’s CUDA SDK. This
package contains, among other things, the CUDA compiler, nvcc, various CUDA
libraries, and the CUBLAS math libraries.

As of November 2010, only the SP2 density matrix purification algorithm has
been ported to the GPU. We will release other ports as they become available. The user
should note that we do not just shift the level 3 BLAS operations, such as SGEMM or
DGEMM, to the GPU, but the entire algorithm. This approach, while more complicated,
minimizes the communication between the CPU and GPU, noting that sending large
matrices back and forth across a slow communication bus can degrade performance
significantly. Our approach, developed by Ed Sanville, yields superior performance on a
single GPU than the threaded CPU code running on 16 Xeon cores.

If you wish to use the GPU-enabled code, LATTE must be compiled with the
GPUOPT preprocessor flag set to ON.

 10 

V. Running LATTE

 Running the serial version of LATTE requires a number of files to be at specific
locations with respect to the executable. Once these files are in place, LATTE can be run
simply by invoking from the command the executable:

cawkwell@stelvio:~/LATTE$./LATTE

where a redirect can be used to log the output, i.e.,

cawkwell@stelvio:~/LATTE$./LATTE > myoutput.dat

LATTE requires that the following files be in the following locations relative to the
executable:

./bl/inputblock.dat – contains the coordinates of atoms, their chemical symbols, and
information on the periodic box.

./TBparam/control.in – specifies what type of calculation you want to do and how
you want to do it.

./MDcontroller – defines how an MD simulation is going to be run.

./TBparam/bondints.dat – contains the parameters for the GSP parameters for the
bond integrals

./TBparam/electrons.dat – defines the basis for each atom and gives the parameters
for the on-site energies, Hubbard U, atomic mass, and spin parameters.

./TBparam/ppots.dat – contains the parameters for the pair potentials.

By default LATTE writes dump files to the directory ./animate and restart files to the
directory ./Restarts. MD simulations will crash if these directories are not available.

V.A Required files, their contents, and formats

 In addition to requiring specific names and be placed in specific locations, the
files required to run LATTE also have fairly rigid formats. The user is strongly
recommended to modify only the arguments of the parameters provided with the
distribution of LATTE to their own purpose.

V.A.1 ./bl/inputblock.dat

The following format is used to input atomic coordinate and the dimensions of the
periodic box, etc:

 11 

where

Line 1: Nats= the total number of atoms, N.

Line 2: A scaling parameter, α , for all subsequent parameters with units of length such
that, position, x = αx ' . Thus, one could set α equal to the lattice parameter of a cubic
metal and then input the dimensions of the box and atomic coordinates and multiples or
fractions of that α . If α = 1.0 , then the remaining entries are positions in units of Å.

Line 3: Defines the periodic orthorhombic simulation box where the six real numbers
correspond to Xmin, Xmax, Ymin, Ymax, Zmin, and Zmax, respectively. Periodic boundary
conditions are applied such that all atoms remain with the specified limits

Line 4 to 4 + N: The scaled Cartesian coordinates, r ' = r α , of the N atoms followed by
their chemical symbol.

V.A.2 ./TBparam/control.in

This file tells LATTE what to do and how to do it. An example of the format is provided
below, followed by a detailed description of each of the entries.

Nats= 5
1.0
0.0 19.0 0.0 19.0 0.0 19.0
4.42000485 4.52000922 4.57997533 C
3.94629128 3.97643147 3.73672264 H
5.08066716 5.31744034 4.18177348 H
5.02016006 3.81042226 5.18608617 H
3.63287667 4.97569671 5.21544236 H

 

 12 

CONTROL Selects the method for computing the density matrix.
 = 1: Matrix diagonalization with a user-defined electronic temperature.

= 2: Niklasson’s second order spectral projection (SP2) algorithm (GPU-
friendly).16
= 3: Niklasson’s recursive expansion of the Fermi operator (GPU-
friendly). 17
= 4: Truncated SP2 algorithm for an approximate Fermi-Dirac distribution
(GPU-friendly).
= 5: ‘SP2Fermi’ algorithm for that yields an approximate Fermi-Dirac
distribution using a truncated purification with a chemical potential for
correcting the occupancy (GPU-friendly).

FERMIM Selects the level of the recursion applied during the recursive expansion of

the Fermi operator (CONTROL = 3).

CGORLIB Selects whether a conjugate gradient method or a LAPACK routine is

employed to solve AX = B when computing the density matrix using the
recursive expansion of the Fermi operator (CONTROL = 3).

 = 0: Call the O(N 3) LAPACK routines DGESV or SGESV.
 = 1: Use the conjugate gradient solver (GPU-friendly and potentially

linear scaling).17

KBT Thermal energy of the electronic subsystem in units of eV. The thermal

energy of the electrons comes into play when diagonalization (CONTROL =

CONTROL= 2
FERMIM= 6
CGORLIB= 1
KBT= 0.1
NORECS= 18
ENTROPYKIND= 1
SPINON= 1 SPINTOL= 1.0e-4
ELECTRO= 1 ELECMETH= 0 ELEC_ETOL= 0.001 ELEC_QTOL= 1.0e-4
COULACC= 1.0e-4 COULCUT= -7.9 COULR1= 40.0
MAXSCF= 50
BREAKTOL= 1.0E-6 MINSP2ITER= 26
FULLQCONV= 0 QITER= 1
QMIX= 0.25 SPINMIX= 0.25
ORDERNMOL= 0
SPARSEON= 0
LCNON= 0 LCNITER= 4 CHTOL= 0.01
SKIN= 1.0
RELAX= 0 MAXITER= 100 RLXFTOL= 0.01
MDON= 1
BOXON= 0
RESTART= 0
XBO= 1
XBODISON= 1
XBODISORDER= 5

 13 

1) or the recursive expansion of the Fermi operator (CONTROL = 3) is used
to compute the density matrix.

NORECS Selects the number of purification steps for algorithms based on the

truncated SP2 algorithm (CONTROL = 4 and CONTROL = 5).

ENTROPYKIND Selects how the entropy of the electronic subsystem is going to be

computed when a finite electronic temperature is employed.
 = 0: S = 0 (for testing purposes)
 = 1: Logarithmic expression for the entropy that corresponds exactly to

Fermi-Dirac statistics, i.e., S = ρ ln ρ + (I − ρ) ln(I − ρ) .
 = 2: A very accurate approximation to the ‘exact’ entropy at almost the

same computational cost.
 = 3: An approximate entropy that requires only one matrix-matrix

multiplication rather than a diagonalization of the finite temperature
density matrix (GPU-friendly).

 S = Tr[Y (C1 + C2Y)] , where Y = ρ(ρ − I) , C1 = 8 ln(2) − 2 , and C2 = 16 ln(2) − 8 .

 = 4: A higher order, GPU-friendly approximation than that implemented

in ENTROPYKIND = 3 that requires two matrix-matrix multiplications.

 S = Tr[C1Y + Y 2 (C2 I + C3Y + C4Y

2)] , where Y = ρ(ρ − I) , C1 = 16 ln(2) − (34 / 5) ,

 C2 = 96 ln(2) − (844 / 15) , C3 = 256 ln(2) − (2336 / 15) , and

 C4 = 256 ln(2) − (2368 / 15) .

SPINON Selects between spin- and non-spin polarized calculations.
 = 0: Spin-polarization off.
 = 1: Spin-polarization enabled.

SPINTOL User-defined tolerance for self-consistency when computing spin-

difference densities. This parameter applies mainly to static calculations
since when we run MD calculations we typically specify some fixed
number of SCF cycles rather than run to full self-consistency at each MD
time step.

ELECTRO Selects whether self-consistent charge transfer or local charge neutrality

calculations are to be performed. In the latter the on-site energies are
adjusted iteratively at each time step to ensure each atom has a specified
amount of charge.

 = 0: Local charge neutrality imposed
 = 1: Self-consistent charge transfer TB

ELECMETH Selects a method for computing the electrostatic potential
 = 0: Ewald summation

 14 

 = 1: Real space electrostatics with no long-range component. This option
comes in handy for debugging the energies and forces from the Ewald
method and allows for very accurate ‘gas-phase’ calculations on small
molecules.

ELEC_ETOL User-defined tolerance for self-consistency when computing partial

charges based on differences between Coulombic energy from one SCF
cycle to the next. This flag is currently not used.

ELEC_QTOL User-defined tolerance for self-consistency when computing partial

charges (requires ELECTRO = 1). In static calculations and the first time
step of an MD run we perform SCF cycles until the value of the partial
charge on each atom at a given SCF cycles differs from the previous cycle
by no more than ELEC_QTOL electrons.

COUL_ACC Relative accuracy of the electrostatic potential computed using the Ewald

method (ELECTRO = 1 and ELECMETH = 0).

COUL_CUT Specifies the range in Å for the real-space summation of Coulombic

interactions. If the Ewald method employed (ELECMETH = 0) then
COUL_CUT is equal to the cut-off for the error-function summation part.
During Ewald summation, if COUL_CUT < 0 then the code determines
automatically the optimal value for the real-space cut-off. It is advised that
the user checks the value since it is likely to be machine and compiler
dependent. If the electrostatic potential is being computed entirely in real-
space (ELECMETH = 1), then COUL_CUT is equal to the radial distance
beyond which partial charges are not included in the sum.

COULR1 Specifies the start of the 5th-order polynomial employed to smoothly

truncate the real-space computation of the electrostatic potential if
ELECMETH = 1. Of course, COULR1 < COUL_CUT when ELECMETH = 1.

MAXSCF The maximum number of SCF cycles to be used computing self-consistent

partial charges and/or spin-difference densities during static calculations
or the first time step in an MD run. LATTE will stop if the number of SCF
cycles is exceeded since it means something is probably is not good with
the atomic geometry and/or the model parameterization and/or the mixing
parameters.

BREAKTOL Specifies the tolerance on the error of trace of the density matrix when

computing the density matrix (or density matrices in the case of a spin-
polarized calculation) using diagonalization (CONTROL = 1) the SP2
purification algorithm (CONTROL = 2). The iterative application of the
purification steps will cease once this tolerance has been reached and
we’ve performed at least MINSP2ITER purification steps if CONTROL = 2.

 15 

MINSP2ITER Specifies the minimum number of iterations within the SP2 density matrix
purification algorithm before any other convergence criteria are checked.
The use of a minimum number of purification steps is important to prevent
the other convergence criteria being satisfied fortuitously and a poor
density matrix being produced. These criteria should be studied closely,
especially when running LATTE in single precision arithmetic.

FULLQCONV Selects whether we will run to full self-consistency (as specified by the

values SPINTOL and ELEC_QTOL) at each time step in an MD run or run
some user-defined number of SCF cycles only.

 = 0: Do not run to full self-consistency at each time self: run QITER SCF
cycles instead

 = 1: Run to full self-consistency at each time step

QITER During MD calculations run QITER SCF cycles at each time step. This

only applies if FULLQCONV = 0.

QMIX Mixing parameter when self-consistently updating partial charges, i.e.,

{q(SCF+1)} = QMIX × {q(SCF)} + (1−QMIX) × {q(SCF-1)} .

SPINMIX Mixing parameter when self-consistently updating the spin-difference

densities, i.e.,
{m(SCF+1)} = QMIX × {m(SCF)} + (1−QMIX) × {m(SCF-1)} .

ORDERNMOL Currently not implemented

SPARSEON Selects between dense (DGEMM or SGEMM) matrix-matrix

multiplication or M.J.C.’s primitive (as in primordial) sparse matrix-
matrix multiplication scheme during SP2 purification (CONTROL = 2) or
the recursive expansion of the Fermi operator (CONTROL = 3). Not
implemented in SP2 for spin-polarized calculations yet.

 = 0: All dense matrix matrix multiplication
 = 1: The sparse matrix method.

LCNON Selects whether local charge neutrality is applied to within a user-defined

tolerance (CHTOL) or whether a user-defined number of iterations
(LCNITER) of the local charge neutrality procedure are performed. This
option applies only when ELECTRO = 0 and when an MD simulation is
being performed.

 = 0: Run a specified number of iterations of the adjustments for local
charge neutrality.

 = 1: Run the LCN calculations until we reach the user-defined tolerance
of the amount of charge per atom

 16 

LCNITER Number of iterations of the adjustments in on-site energies when imposing
local charge neutrality. Invoked during an MD simulation only when
ELECTRO = 0 and LCNON = 0.

CHTOL User-defined tolerance in units of electrons when imposing local charge

neutrality. This tolerance is invoked during static calculations, on the first
time step of an MD simulation when LCNON = 0, and during all time steps
of a MD simulation when LCNON = 1.

SKIN This is the value in units of Å of the ‘skin’ used when constructing the

neighbor lists such that we store atoms in the neighbor lists that are
outside the cut-offs but which may enter the cut-offs between neighbor list
updates.

RELAX Selects whether a steepest descent molecular statics relaxation of an

assembly of atoms is to be performed.
 = 0: Relaxation not performed.
 = 1: Perform the relaxation.

MAXITER Maximum number of atom-moving steps during a molecular statics

relaxation.

RLXFTOL The tolerance in units of eV Å-1 on the magnitude of the force acting on

any atom for the termination of a molecular statics relaxation.

MDON Selects whether a molecular dynamics simulation is to be performed.
 = 0: A MD simulation is not performed.
 = 1: Perform a MD simulation.

BOXON Selects whether reflecting boundaries are to be used in an MD simulation.

This is an old feature when local charge neutrality was typically invoked
during a simulation. It doesn’t make much sense to put atoms in a
reflecting box when long-range electrostatic interactions based on three-
dimensional periodic boundary conditions are employed.

 = 0: Use non-reflecting periodic boundary conditions.
 = 1: Use reflecting walls during a MD simulation.

RESTART Specifies whether a MD simulation is to start from scratch or resume from

a restart file. In the former, coordinates are read from
./bl/inputblock.dat and velocities are initialized in the code. In the
latter, the number of the last time step from the previous run, coordinates,
and velocities are read from ./bl/restart.dat. This file must be put in
place by hand by copying ./restartMD.dat to ./bl/restart.dat. Note
that ‘perfect’ restarts in terms of reading in partial charges, spin densities,
and their histories are not yet possible but this feature will be implemented
in the near future. The accuracy of restarts could also be improved

 17 

(potentially at the expense of portability) by using binary restart files as in
LAMMPS.

 = 0: Start an MD simulation from scratch.
 = 1: Restart an MD simulation from a restart file.

XBO Selects whether during a MD simulation self-consistently calculated

quantities (partial charge, spin-difference densities, the chemical potential)
are to be propagated using Niklasson’s extended Lagrangian Born-
Oppenheimer MD formalism.18, 19 It is strongly recommended that
XLBOMD are switched on whenever MD is performed.

 = 0: No not use XLBOMD propagation.
 = 1: Propagate quantities in a time reversible manner using XLBOMD.

XBODISON Selects whether dissipation is to be employed during a XLBOMD run

(XBO = 1) to counteract the accumulation of numerical noise.19
 = 0: No dissipation included.
 = 1: Employ a dissipation scheme.

XBODISORDER Selects the order (integers in the range 3 through 9) of the dissipation

algorithm employed in an XLBOMD trajectory (XBO = 1) with dissipation
(XBODISON = 1).19

V.A.3 ./MDcontroller

This file provides the basic parameters (temperature, time step, frequency of writing
outputs etc.) for the control of an MD simulation. Parameters related to the computation
of interatomic forces are defined in ./TBparam/control.in leaving ./MDcontroller
dedicated to generic parameters related to MD simulations.

MAXITER= 250000
UDNEIGH= 25
DT= 0.25
TEMPERATURE= 300.0
DUMPFREQ= 250
RSFREQ= 250
WRTFREQ= 50
TOINITTEMP= 1
THERMPER= 500
THERMRUN= 20000
NVTON= 0 AVEPER= 400
SHOCKON= 0
SHOCKSTART= 25000
SHOCKDIR= 1
UPARTICLE= 2000.0 USHOCK= 4590.0

 18 

MAXITER Specifies the number of time steps over which a MD simulation will be

run. If a simulation is resumed from a restart file (RESTART = 1 in
./TBparam/control.in) from a simulation of duration MA steps, then
MAXITER should be set equal to MA + MB where MB is the total number of
MD time steps that the new simulation will span.

UDNEIGH The number of MD time steps between updates of the neighbor lists. This

parameter will depend on the thickness of the ‘skin’ region (defined in
./TBparam/control.in), the temperature, and the size of the time step.

DT The size of the time step for the integration of the equations of motion for

the nuclei in units of femtoseconds.

TEMPERATURE Equal to the initialized or thermostated temperature of a system in units of

K. LATTE will try to adjust the kinetic energy of a system toward a value
consistent with the user-specified TEMPERATURE in two ways. First, upon
the start of a new MD simulation, the velocities of all atoms will be
initialized to values consistent with the value of TEMPERATURE. Second, the
velocities of all atoms will be periodically rescaled during a NVT MD
simulation such that system temperature is equal to the value of
TEMPERATURE. If a simulation is resumed from a restart file, the velocities
are not reinitialized but a thermostated simulation will still push the
velocities of atoms to those consistent with the value of TEMPERATURE.

DUMPFREQ The number of MD time steps between writing a snap shot of the

simulation to file. Dump files are written to the directory ./animate and
are index by the time step (the total time step if one or more restarts have
been applied). The files are currently written in the .cfg format as we find
this provides efficient, dense storage (cf. PDB), can be extendable to
include a number of auxiliary properties (partial charges, spin-difference
densities, etc.), and they can be visualized directly, very well, and very
easily using Ju Li’s Atomeye code.20 See:
http://mt.seas.upenn.edu/Archive/Graphics/A/.

RSFREQ The number of MD time steps between writing a restart file. These files

are written to ./restartMD.dat and are not indexed by the time step.
This file must be copied to ./bl/restart.dat with RESTART = 1 in
./TBparam/control.in to restart a MD run. Note that in their current
guise a ‘perfect’ restart is not possible since the values of self-consistently
calculated quantities and their time histories are not stored. Nevertheless,
the current capabilities of LATTE appear to be reasonably robust.

WRTFREQ The number of MD time steps between computing energies, the virial

pressure, and writing them to the standard output. There is no need to

 19 

write these every time step as the energies will be strongly correlated, and
there is a computational cost to computing tr ρH[] , and especially the
entropic contribution to the free energy when kBTe ≠ 0 . The format of this
output is:

This data can be written to a user-specified file during a MD simulation
via a redirect.

TOINITTEMP = 1: Initialize the velocities at the first time step of a new MD run based

on the value of TEMPERATURE.
 = 0: Do not initialize velocities.

THERMPER The number of MD time step between velocity rescalings during NVT

molecular dynamics (NVTON = 1).

THERMRUN The number of MD time steps over which NVT MD is performed (NVTON

= 1). LATTE has been constructed such that a microcanonical (NVE) MD
simulation will continue directly from a NVT simulation if MAXITER >
THERMRUN. For example, MAXITER = 100000 and THERMRUN = 50000, then
the simulation will start with 50000 time steps of NVT MD followed by
50000 time steps of NVE MD without interruption. Alternatively, if
MAXITER = THERMRUN then NVT MD will be performed for the entire
duration of the simulation.

NVTON Specifies whether a NVE or NVT simulation is to be performed. The latter

will usually be required to thermalize a system toward TEMPERATURE
before switching to a microcanonical XLBOMD simulation. We take full
advantage of the uncorrupted, energy conserving dynamics afforded by the
XLBOMD formalism during NVT simulations by computing an average
temperature, T , over AVEPER time steps of an XLBOMD simulation
(XBO = 1 in ./TBparam/control.in) and then rescaling the velocities of
all atoms by a factor of T ' T , where T ' = TEMPERATURE, once every
THERMRUN time steps.

 = 0: Perform NVE MD and do not apply a themostat.
 = 1: Perform NVT MD by rescaling velocities as specified by the values of

AVEPER, THERMPER, and TEMPERATURE.

AVEPER Compute the average temperature over this many MD time steps in order

to rescale the velocities of atoms during NVT MD.

Time (ps) Free energy (eV) T (K) Pressure (GPa)
 0.00250 -75.6319688288638 3210.2 3.842633

 

 20 

SHOCKON We have developed and implemented a simple ‘Hugoniostat’ to mimic
shock compression in a MD simulation. The passage of a shock wave
causes a change of density via uniaxial compression that is specified by
the Hugoniot relation

ρ = ρ0 / 1−U p Us() , where ρ0 is the initial density,

and

U p and Us are the particle and shock wave velocities, respectively.

 The dynamic compression imparted by a shock wave can be captured in a
small, periodic unit cell by noting that the shock wave produces the
change in density given by the Hugoniot relation in the period of time
required for the shock wave to traverse the simulation cell, l0 / Us . Thus,
during the passage of the shock wave, the length of the simulation cell
parallel to the direction of the propagation of the shock wave will be

l(t) = l0 −U pt , where l0 is the length of the simulation cell before the shock
arrives, and t is time, where 0 ≤ t < l0 / Us .
= 1: Use the Hugoniostat during the MD run

 = 0: Do not use the Hugoniostat.

SHOCKSTART Specifies the time step at which the Hugoniostat will be applied. The

Hugoniostat will stop distorting the simulation cell l0 / (UsΔt) time steps
later.

SHOCKDIR Specifies the Cartesian direction along with the simulation cell will be

distorted (1 = x, 2 = y, 3 = z).

UPARTICLE The particle velocity in units of m/s.

USHOCK The shock wave velocity in units of m/s.

V.A.4 ./TBparam/bondints.dat

This file contains the parameters for the GSP functions for each of the Slater-Koster bond
integrals. LATTE gives the user the option to define a radial scaling individually for each
bond integral. The number of bond integrals depends on basis of each element as well as
the number of elements.
 Recall that,

hll 'τ (R) =
hll 'τ (R0)S(R) R ≤ R1

Bk R − R1()k
k=0

5

∑ R1 < R ≤ Rcut

⎧

⎨
⎪

⎩
⎪

where

 21 

S(R) = R0
R

⎛
⎝⎜

⎞
⎠⎟
n

exp n
R0
Rc

⎛
⎝⎜

⎞
⎠⎟

nc

−
R
Rc

⎛
⎝⎜

⎞
⎠⎟

nc⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Thus, the radial dependence of each bond integral is described completely by the seven
adjustable parameters h(R0) , R0 , R1 , Rcut , n , nc , and Rc . The six parameters Bk{ } are
not adjustable – they are determined uniquely by the conditions that at R = R1 the cut-off
tail should match the corresponding GSP function in value and first and second
derivative, and at R = Rcut the value and first and second derivative of the cut-off tail
should equal zero. The parameters Bk{ } are calculated in LATTE when the GSP
parameters are read from file.
 An example of the format of ./TBparam/bondints.dat is given below:

where the parameter Noints= specifies the number of GSP functions to be read into
LATTE. The only entries in the remainder of the file that may not be self-explanatory
given the preamble in this subsection are the Kind identifiers for the ll 'τ bond integrals.
These are:

sss ≡ ssσ
sps ≡ spσ
pps ≡ ppσ
ppp ≡ ppπ

and LATTE is written such that hspσ = −hpsσ . However, LATTE can handle the situation
where we have two sp-valent elements and p(element 1)s(element 2) is not the same as
p(element 2)s(element 1). Nevertheless, we never define

hpsσ , in the input file, only

hspσ .

V.A.5 ./TBparam/electrons.dat

Parameters relating mainly to free atoms are defined for each element in
./TBparam/electrons.dat. An example of the format and detailed descriptions of each
entry are provided below.

Noints= 7
Element1 Element2 Kind h(R_0) R_0 R_c n n_c R_1 R_cut
C C sss -4.986742022 1.531 2.242063 2.56158 5.982062 2.0 3.0
C C sps 4.661822786 1.531 0.524225 0.597312 0.883757 2.0 3.0
C C pps 5.428514026 1.531 0.318689 6.291311e-4 4.167031 2.0 3.0
C C ppp -1.954959 1.531 1.0075 1.645437 0.292716 2.0 3.0
H H sss -7.521920 0.743 0.128033 0.090587 1.256029 1.5 2.5
H C sss -5.928782 1.093 0.858752 0.565763 1.272500 2.0 3.0
H C sps 7.279468 1.093 1.540020 0.811385 2.511200 2.0 3.0

Noelem= 2
Element Basis Numel Es Ep Mass HubbardU Iss Isp Ipp
C sp 4.0 -10.966922 -2.767504 12.01 9.9986 -0.5 -0.7 -0.7
H ss 1.0 -5.365000 0.0 1.0079 12.8437 -2.5 0.0 0.0

 22 

The first entry, Noelem=, specifies the number of sets of atomic parameters to be read
from the file. The header entries on the next line are fairly self-explanatory, nevertheless:

Element The chemical symbol of the element. This must be consistent across all of

the input files.

Basis Specifies the valence orbitals possessed by each element where ss

corresponds to one valence s orbital per atoms, and sp to one valence s
orbital and three p orbitals (px, py, and pz) per atom.

Numel Specifies the number of valence electrons on an isolated atom of each

element, Ne . The total number of electrons in the system will be equal to

Ne
total = Ne

i
i=1

Natoms∑ , but of course when the self-consistent transfer of
charge between atoms is enabled, we determine partial charges by
calculating the Mulliken charges relative to the value of Ne .

Es The energy of the valence s orbital on a free atom in units of eV.

Ep The energy of the valence p orbitals on a free atom in units of eV.

Mass The atomic mass of the element in units of a.m.u.

HubbardU The value of the Hubbard U for each element in units of eV.

Iss The value of the Stoner-like parameter, in units of eV, that describes the

splitting of the molecular orbital energies resulting from the spin
polarization of valence s orbitals.

Isp The value of the Stoner-like parameter, in units of eV, that couples the

spin-polarization of the valence p(s) orbitals to the valence s(p) orbitals.

Ipp The value of the Stoner-like parameter, in units of eV, that describes the

splitting of the molecular orbital energies resulting from the spin
polarization of valence p orbitals.

V.A.6 ./TBparam/ppots.dat

The parameters for the short-range and long-range pair potentials along with the positions
of the start and end of the joining and cut-off functions are provided in
./TBparam/ppots.dat. An example of the format of this file and a detailed description
of each entry are provided below.

 23 

Nopps Specifies the total number of pair potentials to be read from file. Each pair

potential is described in a block of parameters whose last line is Done.

Max_k Specifies the maximum number of node points used in the evaluation of

the short range pairwise term (see Eqn. (13)) in any of the Nopps pair
potentials to be read. This parameter is included in the input file to assist
with the dimensioning of arrays in LATTE rather than for any physical
reason.

ELE1: ELE2: Specify the pair of elements that will interact via the corresponding pair

potential. The order of the elements is not important but only one of ELE1:
X ELE2: Y and ELE1: Y ELE2: X need to be defined.

k: Specifies the actual number of node points in the short-range pair

potentials between elements ELE1: and ELE2:. Note that k: ≤ Max_k.

Nopps= 3 Max_k= 4
ELE1: C ELE2: C k: 4
Rk Ak
1.5307 129.788382
1.9000 -3.614438
2.4000 7.169733
3.0000 1.816112
Join_R1: 2.0 Join_Rcut: 2.6
vdW_C: 27.787715795
vdW_R1: 8.5 vdW_Rcut: 10.0
Done
ELE1: H ELE2: H k: 4
Rk Ak
0.7428 35.32452626
1.0 4.40710494383
1.6 9.30030199743
2.7 0.124942629563
Join_R1: 2.3 Join_Rcut: 2.6
vdW_C: 1.1274666209
vdW_R1: 8.5 vdW_Rcut: 10.0
Done
ELE1: C ELE2: H k: 4
Rk Ak
1.0933 17.56543067
1.3 27.2682130272
1.85 4.01861782146
2.4 3.09839775397
Join_R1: 2.0 Join_Rcut: 2.3
vdW_C: 5.99291873107
vdW_R1: 8.5 vdW_Rcut: 10.0
Done

 

 24 

Rk Ak The value of the k: node points, Rk , and the corresponding coefficients,
Ak , are listed below the corresponding headers in units of Å and eV,
respectively.

Join_R1: Specifies in units of Å the radial position of the start of the function that

joins smoothly the short-range pair potential to the long-range van der
Waals pair potential. The parameters {B} for the joining function are
calculated within LATTE.

Join_Rcut: Specifies in units of Å the radial position of the end of the function that

joins smoothly the short-range pair potential to the long-range van der
Waals pair potential.

vdW_C: Specifies in units of eV the value of the parameter C in the van der Waals-

like −C R6 pair potential between elements ELE1: and ELE2:.

vdW_R1: Specifies in units of Å the radial position of the start of the cut-off tail that

is added to the long-range pair potential. The parameters {B} for the cut-
off tail are calculated with LATTE.

vdW_Rcut: Specifies in units of Å the radial position the end of the cut-off tail that is

added to the long-range pair potential.

V.B Other files

V.B.1 Files for plotting the radial dependences of model parameters

 During the initialization of a static calculation or MD simulation LATTE will
write the files ./GSPscaling.dat and ./ppot_plot_k.*.dat where the value of the
asterisk run from 1 to the total number of pair potentials employed in the simulation,
Nopps. These files can be used to plot the radial dependence of the bond integrals and
pair potentials, respectively. The order of the GSP functions written in
./GSPscaling.dat is the same as the order employed in ./TBparam/bondints.dat.

V.B.2 Relaxed coordinates

 The file ./restartREL.dat will be written upon the termination of a molecular
statics relaxation (RELAX= 1 in ./TBparam/control.in) based on the maximum number
of iterations or the tolerance on the maximum force. This file contains the coordinates of
the atoms at the last iteration of the relaxation procedure.

V.B.3 Features to come

 Too numerous to mention – stay tuned to our savannah page

 25 

VI. Postamble

VI.A Problems, bugs, etc.

 In the (inevitable) event you identify a bug, mistake, or any ‘issue’ with LATTE,
please contact the one developers. We are happy to help, and only with community
involvement will LATTE improve.

VI.B Feature requests

 If LATTE doesn’t do something you think it should, please let us know. If you’ve
developed something for LATTE and would like to see it added to the main distribution,
send us the source code along with documentation for the manual and we’ll do our best.

VII. LATTE Developers

Marc Cawkwell: cawkwell-at-lanl.gov
Ed Sanville: edsanville-at-gmail.com
Anders Niklasson: amn-at-lanl.gov
Nicolas Bock: nbock-at-lanl.gov
Josh Coe: jcoe-at-lanl.gov
Sven Rudin: srudin-at-lanl.gov

VIII. References

1 A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta, J. Phys. C: Solid State 21,

35 (1988).
2 A. P. Sutton, Electronic Structure of Materials (Oxford University Press, Oxford,

1993).
3 D. G. Pettifor, Bonding and Structure of Molecules and Solids (Oxford University

Press, Oxford, 1995).
4 M. W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press,

Oxford, 2003).
5 W. A. Harrison, Electronic Structure and the Properties of Solids (Dover

Publications, Inc., New York, 1989).
6 M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S.

Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
7 M. W. Finnis, A. T. Paxton, M. Methfessel, and M. van Schilfgaarde, Phys. Rev.

Lett. 81, 5149 (1998).
8 K. Esfarjani and Y. Kawazoe, J. Phys.: Condens. Matter 10, 8257 (1998).
9 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
10 T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S.

Suhai, and R. Scholz, Phys. Stat. Sol. (b) 217, 41 (2000).
11 R. P. Feynman, Phys. Rev. 56, 340 (1939).
12 L. Goodwin, A. J. Skinner, and D. G. Pettifor, Europhys. Lett. 9, 701 (1989).

 26 

13 M. J. Cawkwell, D. Nguyen-Manh, D. G. Pettifor, and V. Vitek, Phys. Rev. B 73,
064104 (2006).

14 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University Press, Oxford, 1987).

15 G. D. Smith, D. Bedrov, O. Byutner, O. Borodin, C. Ayyagari, and T. D. Sewell,
J. Phys. Chem. A 107, 7552 (2003).

16 A. M. N. Niklasson, Phys. Rev. B 66, 155115 (2002).
17 A. M. N. Niklasson, J. Chem. Phys. 129, 244107 (2008).
18 A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008).
19 A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J.

Tymczak, E. Holmstrom, G. S. Zheng, and V. Weber, J. Chem. Phys. 130,
214109 (2009).

20 J. Li, Modelling Simul. Mater. Sci. Eng. 11, 173 (2003).

