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I. Introduction 
 
LATTE is a code written in FORTRAN90 for performing self-consistent charge transfer 
tight-binding (SCC-TB) calculations of total energies and the forces action on atoms in 
molecules and solids. The development of LATTE is geared principally toward large-
scale, long duration, microcanonical molecular dynamics simulations of organic 
molecular materials.  
 We identified SCC-TB as the best candidate for the atomistic simulation of 
organic molecular materials because it is the simplest explicitly quantum mechanical 
method that describes all the inter- and intramolecular interactions at play in these 
systems:  
 

i) the making and breaking of intramolecular covalent bonds, 
ii) charge transfer between species of different electronegativities and long range 

electrostatic interactions, and 
iii) ‘medium’-range van der Waals interactions. 

 
Furthermore, as all chemists know, spin-polarization or spin unrestricted calculations are 
essential if one is going to make or break covalent bonds. Hence, we have the option to 
run spin-polarized SCC-TB calculations if we want to simulate ‘chemistry’. 
 
II. Essential Theory 
 

 The most time consuming step in first principles self-consistent field (SCF) or 
density functional theory (DFT) calculations is the computation of the matrix elements of 
the Fockian or Hamiltonian. TB-based schemes can be orders of magnitude faster than 
first principles methods since the terms that enter the TB Hamiltonian are approximated 
and parameterized rather than computed exactly.1-5 Nevertheless, methods based on the 
TB approximation remain explicitly quantum mechanical since the time-independent 
Schrödinger equation is still constructed and solved.  

The SCC-TB formalism is derived from an expansion of the Kohn-Sham 
equations to second order in charge fluctuations about the self-consistent ground state. 
This procedure has been described in detail by Elstner,6 Finnis,4, 7 and Esfarjani.8 Our 
work follows that of Elstner closely, but with the exception that we employ a minimal 
basis of a real, complete, orthonormal set of free-atom-like orbitals. In the following we 
present a spin-polarized SCC-TB model that we find to be necessary to capture charge 
redistribution upon the scission of covalent bonds and the formation of radicals.  

The spin-independent SCC-TB Hamiltonian, H, is written as a sum of a charge-
independent Slater-Koster TB Hamiltonian,9 H (1) , and a charge dependent Hamiltonian, 
H (2) : 

 

Hiα , jβ = Hiα , jβ
(1) + γ ikqkδ ijδαβ

k=1

N

∑        (1) 
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where i and j label atoms, α and β orbitals (s, px, py, and pz), γ ii  is the Hubbard U for 
species i, γ ik → 1 / Rik   at long range, where Rik  is the scalar distance between atoms i 
and k, and at short range is a screened Coulomb potential,6 qk  is the partial Mulliken 
charge on atom k, δ xy  the Kronecker delta, and N the total number of atoms. The total 
energy relative to that of isolated atoms is written: 
 
Etotal = 2tr[(ρ − ρ0 )H ]−1 2 γ ijqiqj + Epair

i, j
∑       (2) 

 
where in the first term a factor of two is included to account for spin degeneracy, tr[X] 
denotes the trace of matrix X, ρ  is the density matrix calculated self-consistently from 
the SCC-TB Hamiltonian and the electronic occupancy, and ρ0  the density matrix for 
isolated atoms. The second term is the so-called double counting correction for the 
electrostatic potential, and Epair  is a sum of pair potentials that is strongly repulsive at 
short range and which at long range provides −1 R6  van der Waals-like interactions.  

An explicit dependence of the total energy on electron spin can be built into the 
SCC-TB formalism through the introduction of two spin populations and the addition of a 
spin dependent Hamiltonian, H (3) .10 The Hamiltonians for the up and down spins 
populations are 

 
H ↑ = H (1) + H (2) + H (3)         (3) 
 
and 
 
H ↓ = H (1) + H (2) − H (3),         (4) 
 
respectively. The spin-dependent Hamiltonian is given by:  
 
Hiα , jβ

(3) = 1 2 Il ,l '' + Il ',l ''( )mi;l ''δ ijδαβ
l '∈i
∑

l∈i
∑       (5) 

 
where l is the azimuthal quantum number, Il ,l '  an energy parameter related to the splitting 
between molecular orbitals as a result of spin polarization, and mi;l  the difference 
between the number of electrons of up and down spin on the l orbitals of atom i. The total 
energy relative to isolated atoms within the spin-polarized formalism is written:  
 
Etotal = tr ρ − ρ0( ) H (1) + H (2)( )⎡⎣ ⎤⎦ −1 2 γ ijqiqj

i, j
∑ +1 2 mi;lmi;l ' − mi;l

0 mi;l '
0( ) Il ,l ' + Epair    

l ,l '
∑

i
∑

           (6) 
 
where mi;l

0  is the difference between the number of electrons of up and down spin on the 

l orbitals of isolated atoms, and ρ = ρ↑ + ρ↓  where the density matrices for spin up and 
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down electrons are calculated from the Hamiltonians in Eqns (3) and (4), respectively, 
subject to the condition that the value of tr[ρ↑ + ρ↓ ]  is equal to the total number of 
electrons.  

The SCC-TB equations must be solved self-consistently since the SCC-TB 
Hamiltonian depends on partial charges and spin-difference densities that are themselves 
extracted from the density matrix. In the case of spin-polarized calculations these are, 

 
qi = ρiα ,iα − ρiα ,iα

0⎡⎣ ⎤⎦
α∈i
∑         (7) 

 
and 
 
mi;l = ρiα ,iα

↑ − ρiα ,iα
↓⎡⎣ ⎤⎦

α∈l
∑ .         (8) 

 
However, once the self-consistent density matrix has been evaluated, the force acting 
upon atoms within the system can be computed using the Hellmann-Feynman theorem,4, 

11 i.e., 
 

Fk = −tr ρ ∂H (1)

∂Rk

⎡

⎣
⎢

⎤

⎦
⎥ −
1
2

qiqj
∂γ ij

∂Rk

−
∂Epair
∂Rk

.
j≠ i
∑

i
∑       (9) 

   
III. Implementation of SCC-TB into LATTE 
 
III.A Slater-Koster Hamiltonian 
 

The matrix elements on the leading diagonal of the Slater-Koster9 TB 
Hamiltonian, H (1) , are the energies of the valence orbitals on free atoms. The off-
diagonal elements of H (1) , commonly referred to as hopping integrals, depend on 
interatomic distance and the angular character of the overlapping valence orbitals. The 
hopping integrals take the form of angular dependent combinations of a small number 
fundamental bond integrals. The radial dependence of the hopping integrals is contained 
within the bond integrals, hll 'τ (R) , where τ = σ, π, δ etc. The angular dependencies of the 
hopping integrals for sp-valent elements have been tabulated,9 thus one must only 
represent and parameterize the fundamental bond integrals. We have chosen to represent 
the bond integrals by Goodwin-Skinner-Pettifor functions,12, 13 S(R) , such that 
h(R) = h(R0 )S(R) , where 

 

S(R) = R0
R

⎛
⎝⎜

⎞
⎠⎟
n

exp n
R0
Rc

⎛
⎝⎜

⎞
⎠⎟

nc

−
R
Rc

⎛
⎝⎜

⎞
⎠⎟

nc⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      (10) 

 
where R0  is typically an equilibrium bond length, and n, nc , and Rc  are fitting 
parameters. A polynomial of the form 
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 t(R) = Bm (R − Rs )
m ,

m=0

5

∑         (11) 

 
where B0 to B5 are fitting parameters, is added to the bond integrals at R = Rs  to ensure a 
smooth cut-off at a specified distance.  

A total of 45 parameters must be defined in order to construct H (1)  for 
hydrocarbons. We find that each of these can be fitted by matching in a least squares 
sense the energies of occupied and unoccupied molecular orbitals calculated using SCC-
TB and DFT. The radial dependence of the bond integrals can be extracted by repeating 
this procedure for a series of homogeneously dilated molecules.  

 
III.B Electrostatic Hamiltonian 
 

Only one fitting parameter per element is required in the construction of H (2) , 
namely the Hubbard U. The Hubbard U can be estimated using experimental values for 
the ionization potential, I, and the electron affinity, A, of each element, U ≈ I − A,  which 
we apply without modification. The Coulomb potential is screened at short range using 
the formalism of Elstner6 and we use the Ewald method14 to compute the long-range 
contribution to the electrostatic potential. 
 
III.C Pairwise Interactions 
 

We construct a sum of pair potentials for each element pair to provide strong 
repulsion at short range and weak attraction that mimics van der Waals bonding at long 
range. The pairwise term in the expression for the total energy takes the form 

 

Epair =
1
2

Φ(Rij )
j≠ i
∑

i
∑          (12) 

 
where 
 

Φ =

Ak Rk − Rij( )3θ Rk − Rij⎡⎣ ⎤⎦;
k=1

4

∑ Rij ≤ RA

t join (Rij ); RA < Rij ≤ RB

−C Rij
6; RB < Rij ≤ Rs

tcut (Rij ); Rs < Rij ≤ Rcut .

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

     (13) 

 
The first term is the short-range part of the pair potential where the node points, Rk , and 
pre-factors, Ak , are fitting parameters, and θ[x]  is the Heaviside step function.13 The 
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adjustable parameters Rk  and Ak  are fitted such that the overall model reproduces 
cohesive energies, and the length and force constants of covalent bonds calculated using 
first principles methods. The third term provides van der Waals-like interactions and the 
adjustable parameter, C, is taken from the literature for each element pair.15 The second 
term, t join , takes the same form as Eqn. (11) and is used to smoothly join the short range 
pair potential to the long range van der Waals-like pair potential over the range 
RA < R ≤ RB . The final term applies a smooth cut-off to the pair potential. 
 
III.D Spin-dependent Hamiltonian 
 

The adjustable parameters that enter H (3)  affect the magnitude of the relative 
shifts in energy of the molecular orbitals for the two spin channels. The values of Il ,l '  for 
carbon and hydrogen have been estimated using spin-polarized DFT calculations of the 
energies of the molecular orbitals of free atoms and molecules that possess at least one 
unpaired spin. 
 
IV. Compiling LATTE 
 

A serial version of LATTE can be compiled on a laptop or desktop equipped with 
a FORTRAN90 compiler and pre-compiled LAPACK/BLAS libraries. The GNU gfortran 
compiler works very well and we have also tested the more heavily optimized PGI 
(pgf90), Intel (ifort), and Pathscale (pathf90) compilers. Furthermore, the 
LAPACK/BLAS libraries can either be downloaded free of charge 
(http://www.netlib.org/lapack) and compiled locally, or one can try the heavily optimized 
versions such as ACML from PGI, MKL from Intel, the auto-tuned ATLAS, or GOTO 
BLAS. It is well worthwhile testing a number of linear algebra library and compiler 
combinations since it is possible to obtain very significant speed-ups on fixed hardware. 
Users should note that commercial compilers and libraries may improve performance but 
publically available software (gfortran: http://gcc.gnu.org/fortran/, LAPACK/BLAS: 
http://www.netlib.org/lapack/LICENSE) on a regular desktop running LINUX provide 
identical accuracy and comparable performance.  
 If you are going to use the CUDA code on a NVIDIA graphics card, you must 
download the SDK from NVIDIA to get the nvcc compiler, CUBLAS library, and other 
essential libraries. 

 
Note added 11/9/2010: We have noticed absolutely awful performance from the BLAS 
level 3 SGEMM routine when gfortran is the F90 compiler. Please beware – bad 
performance may not always be our fault. 
 
IV.A makefile.h 
 
To compile LATTE, simply edit makefile.h in the src directory to specify your 
compilers and the location of your libraries. In this file we also specify pre-processor 
options that select whether single or double precision code will be compiled and whether 
to link to the CUDA code in MATRIX.  
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PRECISION  = DOUBLE: run in double precision arithmetic. 
  = SINGLE: run in single precision arithmetic. 
  
GPUOPT  = ON: compile in the CUDA code for SP2 density matrix purification in 

MATRIX. The library libmatrix_cuda.a must be compiled for LATTE 
is compiled. 
= OFF: compile only CPU code.  

 
CPP  Selects the c preprocessor and passes the preprocessor options. 
 
FC  Your preferred FORTRAN90 compiler. 
 
FCL Linker flags for the F90 compiler. Pass the flag to compile the OpenMP 

parts of the code here. 
 
FFLAGS Optimization flags for the F90 compiler. Our testing to date shows that it 

is safe to ‘max-out’ these since LATTE is far from exotic. 
 
GPU_LINKFLAG   These flags are required to for the F90 code to talk to the C++ code 

in MATRIX when compiling the hybrid CPU/GPU code. 
 
LIB Specify your preferred LAPACK and BLAS implementations and the path 

to them. 
 
GPU_LIB Specify the path to libmatrix_cuda.a and the CUDA libraries. 
 
Then, simply run ‘make’ in the main directory to compile. If the compilation is 
successful, you will obtain an executable in the main directory whose name reflects the 
preprocessor options defined in makefile.h. 
 
 
 
 

# 
# Compilation and link flags for LATTE 
# 
 
PRECISION = SINGLE 
GPUOPT = OFF 
CPP = cpp -P -C -D$(PRECISION)PREC -DGPU$(GPUOPT) -traditional < $*.F90 > $*.f90 
FC = ifort 
FCL = $(FC) -openmp 
FFLAGS =  -O3 -openmp 
LINKFLAG = 
GPU_LINKFLAG = -L../MATRIX -lgfortran -lstdc++ 
LIB = -L/opt/ACML/acml-4.3.0/ifort64_mp/lib -lacml_mp 
GPU_LIB = -L../MATRIX -lmatrix_cuda -L/usr/local/cuda/lib64 -lcublas -lcudart 
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IV.B Parallel processing 
 

We are working toward meshing LATTE with MPI distributed memory, 
parallelized linear algebra libraries (ScaLAPACK and PBLAS). Makefiles and 
instructions will be added once these features are merged into the publically available 
LATTE distribution. We also intend to release parallelized versions of the Ewald sums 
for the long-range electrostatics.  
 While a distributed memory version LATTE remains under development, you can 
run the code on a multi-core shared memory desktop or compute node. Most high 
performance math libraries (ACML, MKL, and GOTO) are threaded and by setting 
OMP_NUM_THREADS accordingly, LAPACK and BLAS calls can be run in parallel. 
Moreover, we have threaded using OpenMP all of the compute-intensive triple loops in 
the code. These capabilities can be activated by passing to your F90 compiler the 
appropriate flag (-fopenmp for gfortran, -openmp for ifort, and –mp for pgf90, etc). We 
have seen a good, but not perfect, scaling of the threaded code up to about 8 cores, with 
deteriorating performance gains at 16 cores. Nevertheless, this approach will reduce 
significantly the wall time for your runs with no loss of accuracy. 
 
IV.C GPU/CUDA acceleration  
 

LATTE is GPU-enabled! Before the user gets carried away, there are a few 
provisions. First, you must have a NVIDIA graphics card with a compute capability of at 
least 1.3 if you plan to run double and single precision arithmetic on it. If you don’t own 
suitable hardware, Fermi-based GPUs from NVIDIA such as a GTX480 are very 
affordable. Slightly more thought must go into powering them – ensure your power 
supply has a sufficiently high rating (something of the order of 1kW) and that you have 
sufficient connectors (Fermi’s have 4 power inputs, I think). You may, like us, have to 
build a dedicated machine to ensure the power supply and motherboard can handle the 
GPU. Once your hardware is up to ‘spec’, download the NVIDIA’s CUDA SDK. This 
package contains, among other things, the CUDA compiler, nvcc, various CUDA 
libraries, and the CUBLAS math libraries. 

As of November 2010, only the SP2 density matrix purification algorithm has 
been ported to the GPU. We will release other ports as they become available. The user 
should note that we do not just shift the level 3 BLAS operations, such as SGEMM or 
DGEMM, to the GPU, but the entire algorithm. This approach, while more complicated, 
minimizes the communication between the CPU and GPU, noting that sending large 
matrices back and forth across a slow communication bus can degrade performance 
significantly. Our approach, developed by Ed Sanville, yields superior performance on a 
single GPU than the threaded CPU code running on 16 Xeon cores.  

If you wish to use the GPU-enabled code, LATTE must be compiled with the 
GPUOPT preprocessor flag set to ON. 
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V. Running LATTE 
 
  Running the serial version of LATTE requires a number of files to be at specific 
locations with respect to the executable. Once these files are in place, LATTE can be run 
simply by invoking from the command the executable: 
 
cawkwell@stelvio:~/LATTE$ ./LATTE 
 
where a redirect can be used to log the output, i.e., 
 
cawkwell@stelvio:~/LATTE$ ./LATTE > myoutput.dat 
 
LATTE requires that the following files be in the following locations relative to the 
executable: 
 
./bl/inputblock.dat – contains the coordinates of atoms, their chemical symbols, and 
information on the periodic box. 
 
./TBparam/control.in – specifies what type of calculation you want to do and how 
you want to do it. 
 
./MDcontroller – defines how an MD simulation is going to be run. 
 
./TBparam/bondints.dat – contains the parameters for the GSP parameters for the 
bond integrals 
 
./TBparam/electrons.dat – defines the basis for each atom and gives the parameters 
for the on-site energies, Hubbard U, atomic mass, and spin parameters. 
 
./TBparam/ppots.dat – contains the parameters for the pair potentials. 
 
By default LATTE writes dump files to the directory ./animate and restart files to the 
directory ./Restarts. MD simulations will crash if these directories are not available. 
 
V.A Required files, their contents, and formats  
 
 In addition to requiring specific names and be placed in specific locations, the 
files required to run LATTE also have fairly rigid formats. The user is strongly 
recommended to modify only the arguments of the parameters provided with the 
distribution of LATTE to their own purpose. 
 
V.A.1 ./bl/inputblock.dat 
 
The following format is used to input atomic coordinate and the dimensions of the 
periodic box, etc: 
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where 
 
Line 1: Nats= the total number of atoms, N. 
 
Line 2: A scaling parameter, α , for all subsequent parameters with units of length such 
that, position, x = αx ' . Thus, one could set α  equal to the lattice parameter of a cubic 
metal and then input the dimensions of the box and atomic coordinates and multiples or 
fractions of that α . If α = 1.0 , then the remaining entries are positions in units of Å. 
 
Line 3: Defines the periodic orthorhombic simulation box where the six real numbers 
correspond to Xmin, Xmax, Ymin, Ymax, Zmin, and Zmax, respectively. Periodic boundary 
conditions are applied such that all atoms remain with the specified limits 
 
Line 4 to 4 + N: The scaled Cartesian coordinates, r ' = r α , of the N atoms followed by 
their chemical symbol.   
 
V.A.2 ./TBparam/control.in 
 
This file tells LATTE what to do and how to do it. An example of the format is provided 
below, followed by a detailed description of each of the entries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nats= 5 
1.0      
0.0 19.0 0.0 19.0 0.0 19.0  
4.42000485      4.52000922      4.57997533 C 
3.94629128      3.97643147      3.73672264 H 
5.08066716      5.31744034      4.18177348 H 
5.02016006      3.81042226      5.18608617 H 
3.63287667      4.97569671      5.21544236 H 

 



 12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONTROL  Selects the method for computing the density matrix. 
  = 1: Matrix diagonalization with a user-defined electronic temperature. 

= 2: Niklasson’s second order spectral projection (SP2) algorithm (GPU-
friendly).16  
= 3: Niklasson’s recursive expansion of the Fermi operator (GPU-
friendly). 17 
= 4: Truncated SP2 algorithm for an approximate Fermi-Dirac distribution 
(GPU-friendly). 
= 5: ‘SP2Fermi’ algorithm for that yields an approximate Fermi-Dirac 
distribution using a truncated purification with a chemical potential for 
correcting the occupancy (GPU-friendly). 

 
FERMIM Selects the level of the recursion applied during the recursive expansion of 

the Fermi operator (CONTROL = 3).  
 

 
CGORLIB Selects whether a conjugate gradient method or a LAPACK routine is 

employed to solve AX = B  when computing the density matrix using the 
recursive expansion of the Fermi operator (CONTROL = 3).  

 = 0: Call the O(N 3)  LAPACK routines DGESV or SGESV. 
 = 1: Use the conjugate gradient solver (GPU-friendly and potentially 

linear scaling).17 
 
KBT Thermal energy of the electronic subsystem in units of eV. The thermal 

energy of the electrons comes into play when diagonalization (CONTROL = 

CONTROL= 2 
FERMIM= 6 
CGORLIB= 1 
KBT= 0.1 
NORECS= 18 
ENTROPYKIND= 1 
SPINON= 1 SPINTOL= 1.0e-4 
ELECTRO= 1 ELECMETH= 0 ELEC_ETOL= 0.001 ELEC_QTOL= 1.0e-4 
COULACC= 1.0e-4 COULCUT= -7.9 COULR1= 40.0 
MAXSCF= 50 
BREAKTOL= 1.0E-6 MINSP2ITER= 26 
FULLQCONV= 0 QITER= 1 
QMIX= 0.25 SPINMIX= 0.25 
ORDERNMOL= 0 
SPARSEON= 0 
LCNON= 0 LCNITER= 4 CHTOL= 0.01 
SKIN= 1.0 
RELAX= 0 MAXITER= 100 RLXFTOL= 0.01 
MDON= 1 
BOXON= 0 
RESTART= 0 
XBO= 1 
XBODISON= 1 
XBODISORDER= 5 
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1) or the recursive expansion of the Fermi operator (CONTROL = 3) is used 
to compute the density matrix. 

 
NORECS Selects the number of purification steps for algorithms based on the 

truncated SP2 algorithm (CONTROL = 4 and CONTROL = 5). 
 
ENTROPYKIND Selects how the entropy of the electronic subsystem is going to be 

computed when a finite electronic temperature is employed. 
 = 0: S = 0 (for testing purposes) 
 = 1: Logarithmic expression for the entropy that corresponds exactly to 

Fermi-Dirac statistics, i.e.,   S = ρ ln ρ + (I − ρ) ln(I − ρ) . 
 = 2: A very accurate approximation to the ‘exact’ entropy at almost the 

same computational cost. 
 = 3: An approximate entropy that requires only one matrix-matrix 

multiplication rather than a diagonalization of the finite temperature 
density matrix (GPU-friendly).  

 
  S = Tr[Y (C1 + C2Y )] , where   Y = ρ(ρ − I ) ,   C1 = 8 ln(2) − 2 , and   C2 = 16 ln(2) − 8 . 

 
 = 4: A higher order, GPU-friendly approximation than that implemented 

in ENTROPYKIND = 3 that requires two matrix-matrix multiplications. 
 
   S = Tr[C1Y + Y 2 (C2 I + C3Y + C4Y

2 )] , where   Y = ρ(ρ − I ) ,   C1 = 16 ln(2) − (34 / 5) , 

  C2 = 96 ln(2) − (844 / 15) ,   C3 = 256 ln(2) − (2336 / 15) , and 

  C4 = 256 ln(2) − (2368 / 15) . 
 
SPINON Selects between spin- and non-spin polarized calculations.  
 = 0: Spin-polarization off. 
 = 1: Spin-polarization enabled. 
 
SPINTOL  User-defined tolerance for self-consistency when computing spin-

difference densities. This parameter applies mainly to static calculations 
since when we run MD calculations we typically specify some fixed 
number of SCF cycles rather than run to full self-consistency at each MD 
time step. 

 
ELECTRO  Selects whether self-consistent charge transfer or local charge neutrality 

calculations are to be performed. In the latter the on-site energies are 
adjusted iteratively at each time step to ensure each atom has a specified 
amount of charge. 

 = 0: Local charge neutrality imposed 
 = 1: Self-consistent charge transfer TB 
 
ELECMETH  Selects a method for computing the electrostatic potential 
 = 0: Ewald summation 
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 = 1: Real space electrostatics with no long-range component. This option 
comes in handy for debugging the energies and forces from the Ewald 
method and allows for very accurate ‘gas-phase’ calculations on small 
molecules. 

 
ELEC_ETOL  User-defined tolerance for self-consistency when computing partial 

charges based on differences between Coulombic energy from one SCF 
cycle to the next. This flag is currently not used. 

 
ELEC_QTOL  User-defined tolerance for self-consistency when computing partial 

charges (requires ELECTRO = 1). In static calculations and the first time 
step of an MD run we perform SCF cycles until the value of the partial 
charge on each atom at a given SCF cycles differs from the previous cycle 
by no more than ELEC_QTOL electrons. 

 
COUL_ACC   Relative accuracy of the electrostatic potential computed using the Ewald 

method (ELECTRO = 1 and ELECMETH = 0). 
 
COUL_CUT  Specifies the range in Å for the real-space summation of Coulombic 

interactions. If the Ewald method employed (ELECMETH = 0) then 
COUL_CUT is equal to the cut-off for the error-function summation part. 
During Ewald summation, if COUL_CUT < 0 then the code determines 
automatically the optimal value for the real-space cut-off. It is advised that 
the user checks the value since it is likely to be machine and compiler 
dependent. If the electrostatic potential is being computed entirely in real-
space (ELECMETH = 1), then COUL_CUT is equal to the radial distance 
beyond which partial charges are not included in the sum.  

 
COULR1 Specifies the start of the 5th-order polynomial employed to smoothly 

truncate the real-space computation of the electrostatic potential if 
ELECMETH = 1. Of course, COULR1 < COUL_CUT when ELECMETH = 1. 

 
MAXSCF The maximum number of SCF cycles to be used computing self-consistent 

partial charges and/or spin-difference densities during static calculations 
or the first time step in an MD run. LATTE will stop if the number of SCF 
cycles is exceeded since it means something is probably is not good with 
the atomic geometry and/or the model parameterization and/or the mixing 
parameters. 

 
BREAKTOL Specifies the tolerance on the error of trace of the density matrix when 

computing the density matrix (or density matrices in the case of a spin-
polarized calculation) using diagonalization (CONTROL = 1) the SP2 
purification algorithm (CONTROL = 2). The iterative application of the 
purification steps will cease once this tolerance has been reached and 
we’ve performed at least MINSP2ITER purification steps if CONTROL = 2. 
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MINSP2ITER Specifies the minimum number of iterations within the SP2 density matrix 
purification algorithm before any other convergence criteria are checked. 
The use of a minimum number of purification steps is important to prevent 
the other convergence criteria being satisfied fortuitously and a poor 
density matrix being produced. These criteria should be studied closely, 
especially when running LATTE in single precision arithmetic.  

 
FULLQCONV  Selects whether we will run to full self-consistency (as specified by the 

values SPINTOL and ELEC_QTOL) at each time step in an MD run or run 
some user-defined number of SCF cycles only. 

 = 0: Do not run to full self-consistency at each time self: run QITER SCF 
cycles instead 

 = 1: Run to full self-consistency at each time step 
 
QITER During MD calculations run QITER SCF cycles at each time step. This 

only applies if FULLQCONV = 0. 
 
QMIX Mixing parameter when self-consistently updating partial charges, i.e., 

{q(SCF+1)} = QMIX × {q(SCF)} + (1−QMIX) × {q(SCF-1)} . 
 
SPINMIX  Mixing parameter when self-consistently updating the spin-difference 

densities, i.e., 
{m(SCF+1)} = QMIX × {m(SCF)} + (1−QMIX) × {m(SCF-1)} . 

 
ORDERNMOL  Currently not implemented 
 
SPARSEON Selects between dense (DGEMM or SGEMM) matrix-matrix 

multiplication or M.J.C.’s primitive (as in primordial) sparse matrix-
matrix multiplication scheme during SP2 purification (CONTROL = 2) or 
the recursive expansion of the Fermi operator (CONTROL = 3). Not 
implemented in SP2 for spin-polarized calculations yet. 

 = 0: All dense matrix matrix multiplication 
 = 1: The sparse matrix method. 
 
LCNON Selects whether local charge neutrality is applied to within a user-defined 

tolerance (CHTOL) or whether a user-defined number of iterations 
(LCNITER) of the local charge neutrality procedure are performed. This 
option applies only when ELECTRO = 0 and when an MD simulation is 
being performed. 

 = 0: Run a specified number of iterations of the adjustments for local 
charge neutrality. 

 = 1: Run the LCN calculations until we reach the user-defined tolerance 
of the amount of charge per atom 
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LCNITER Number of iterations of the adjustments in on-site energies when imposing 
local charge neutrality. Invoked during an MD simulation only when 
ELECTRO = 0 and LCNON = 0. 

 
CHTOL User-defined tolerance in units of electrons when imposing local charge 

neutrality. This tolerance is invoked during static calculations, on the first 
time step of an MD simulation when LCNON = 0, and during all time steps 
of a MD simulation when LCNON = 1. 

 
SKIN This is the value in units of Å of the ‘skin’ used when constructing the 

neighbor lists such that we store atoms in the neighbor lists that are 
outside the cut-offs but which may enter the cut-offs between neighbor list 
updates. 

 
RELAX Selects whether a steepest descent molecular statics relaxation of an 

assembly of atoms is to be performed.  
 = 0: Relaxation not performed. 
 = 1: Perform the relaxation. 
 
MAXITER  Maximum number of atom-moving steps during a molecular statics 

relaxation. 
 
RLXFTOL The tolerance in units of eV Å-1 on the magnitude of the force acting on 

any atom for the termination of a molecular statics relaxation. 
 
MDON Selects whether a molecular dynamics simulation is to be performed.  
 = 0: A MD simulation is not performed. 
 = 1: Perform a MD simulation. 
 
BOXON Selects whether reflecting boundaries are to be used in an MD simulation. 

This is an old feature when local charge neutrality was typically invoked 
during a simulation. It doesn’t make much sense to put atoms in a 
reflecting box when long-range electrostatic interactions based on three-
dimensional periodic boundary conditions are employed. 

 = 0: Use non-reflecting periodic boundary conditions.  
 = 1: Use reflecting walls during a MD simulation. 
 
RESTART Specifies whether a MD simulation is to start from scratch or resume from 

a restart file. In the former, coordinates are read from 
./bl/inputblock.dat and velocities are initialized in the code. In the 
latter, the number of the last time step from the previous run, coordinates, 
and velocities are read from ./bl/restart.dat. This file must be put in 
place by hand by copying ./restartMD.dat to ./bl/restart.dat. Note 
that ‘perfect’ restarts in terms of reading in partial charges, spin densities, 
and their histories are not yet possible but this feature will be implemented 
in the near future. The accuracy of restarts could also be improved 
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(potentially at the expense of portability) by using binary restart files as in 
LAMMPS. 

 = 0: Start an MD simulation from scratch. 
 = 1: Restart an MD simulation from a restart file. 
 
XBO Selects whether during a MD simulation self-consistently calculated 

quantities (partial charge, spin-difference densities, the chemical potential) 
are to be propagated using Niklasson’s extended Lagrangian Born-
Oppenheimer MD formalism.18, 19 It is strongly recommended that 
XLBOMD are switched on whenever MD is performed. 

 = 0: No not use XLBOMD propagation. 
 = 1: Propagate quantities in a time reversible manner using XLBOMD. 
 
XBODISON Selects whether dissipation is to be employed during a XLBOMD run 

(XBO = 1) to counteract the accumulation of numerical noise.19 
 = 0: No dissipation included. 
 = 1: Employ a dissipation scheme. 
 
XBODISORDER  Selects the order (integers in the range 3 through 9) of the dissipation 

algorithm employed in an XLBOMD trajectory (XBO = 1) with dissipation 
(XBODISON = 1).19 

 
V.A.3 ./MDcontroller 
 
This file provides the basic parameters (temperature, time step, frequency of writing 
outputs etc.) for the control of an MD simulation. Parameters related to the computation 
of interatomic forces are defined in ./TBparam/control.in leaving ./MDcontroller 
dedicated to generic parameters related to MD simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MAXITER= 250000 
UDNEIGH= 25 
DT= 0.25 
TEMPERATURE= 300.0 
DUMPFREQ= 250 
RSFREQ= 250 
WRTFREQ= 50 
TOINITTEMP= 1 
THERMPER= 500 
THERMRUN= 20000 
NVTON= 0 AVEPER= 400 
SHOCKON= 0 
SHOCKSTART= 25000 
SHOCKDIR= 1 
UPARTICLE= 2000.0 USHOCK= 4590.0 
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MAXITER Specifies the number of time steps over which a MD simulation will be 

run. If a simulation is resumed from a restart file (RESTART = 1 in 
./TBparam/control.in) from a simulation of duration MA steps, then 
MAXITER should be set equal to MA + MB where MB is the total number of 
MD time steps that the new simulation will span. 

 
UDNEIGH The number of MD time steps between updates of the neighbor lists. This 

parameter will depend on the thickness of the ‘skin’ region (defined in 
./TBparam/control.in), the temperature, and the size of the time step. 

 
DT The size of the time step for the integration of the equations of motion for 

the nuclei in units of femtoseconds. 
 
TEMPERATURE Equal to the initialized or thermostated temperature of a system in units of 

K. LATTE will try to adjust the kinetic energy of a system toward a value 
consistent with the user-specified TEMPERATURE in two ways. First, upon 
the start of a new MD simulation, the velocities of all atoms will be 
initialized to values consistent with the value of TEMPERATURE. Second, the 
velocities of all atoms will be periodically rescaled during a NVT MD 
simulation such that system temperature is equal to the value of 
TEMPERATURE. If a simulation is resumed from a restart file, the velocities 
are not reinitialized but a thermostated simulation will still push the 
velocities of atoms to those consistent with the value of TEMPERATURE. 

 
DUMPFREQ The number of MD time steps between writing a snap shot of the 

simulation to file. Dump files are written to the directory ./animate and 
are index by the time step (the total time step if one or more restarts have 
been applied). The files are currently written in the .cfg format as we find 
this provides efficient, dense storage (cf. PDB), can be extendable to 
include a number of auxiliary properties (partial charges, spin-difference 
densities, etc.), and they can be visualized directly, very well, and very 
easily using Ju Li’s Atomeye code.20 See: 
http://mt.seas.upenn.edu/Archive/Graphics/A/.  

 
RSFREQ The number of MD time steps between writing a restart file. These files 

are written to ./restartMD.dat and are not indexed by the time step. 
This file must be copied to ./bl/restart.dat with RESTART = 1 in 
./TBparam/control.in to restart a MD run. Note that in their current 
guise a ‘perfect’ restart is not possible since the values of self-consistently 
calculated quantities and their time histories are not stored. Nevertheless, 
the current capabilities of LATTE appear to be reasonably robust. 

 
WRTFREQ The number of MD time steps between computing energies, the virial 

pressure, and writing them to the standard output. There is no need to 
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write these every time step as the energies will be strongly correlated, and 
there is a computational cost to computing tr ρH[ ] , and especially the 
entropic contribution to the free energy when kBTe ≠ 0 . The format of this 
output is: 

  
 
 
 
 
  

This data can be written to a user-specified file during a MD simulation 
via a redirect. 

 
TOINITTEMP = 1: Initialize the velocities at the first time step of a new MD run based 

on the value of TEMPERATURE. 
  = 0: Do not initialize velocities. 
 
THERMPER The number of MD time step between velocity rescalings during NVT 

molecular dynamics (NVTON = 1). 
 
THERMRUN The number of MD time steps over which NVT MD is performed (NVTON 

= 1). LATTE has been constructed such that a microcanonical (NVE) MD 
simulation will continue directly from a NVT simulation if MAXITER > 
THERMRUN. For example, MAXITER = 100000 and THERMRUN = 50000, then 
the simulation will start with 50000 time steps of NVT MD followed by 
50000 time steps of NVE MD without interruption. Alternatively, if 
MAXITER = THERMRUN then NVT MD will be performed for the entire 
duration of the simulation.  

 
NVTON Specifies whether a NVE or NVT simulation is to be performed. The latter 

will usually be required to thermalize a system toward TEMPERATURE 
before switching to a microcanonical XLBOMD simulation. We take full 
advantage of the uncorrupted, energy conserving dynamics afforded by the 
XLBOMD formalism during NVT simulations by computing an average 
temperature, T , over AVEPER time steps of an XLBOMD simulation 
(XBO = 1 in ./TBparam/control.in) and then rescaling the velocities of 
all atoms by a factor of T ' T , where T '  = TEMPERATURE, once every 
THERMRUN time steps. 

 = 0: Perform NVE MD and do not apply a themostat. 
 = 1: Perform NVT MD by rescaling velocities as specified by the values of 

AVEPER, THERMPER, and TEMPERATURE. 
 
AVEPER Compute the average temperature over this many MD time steps in order 

to rescale the velocities of atoms during NVT MD. 
 

#   Time (ps)         Free energy (eV)  T (K)   Pressure (GPa) 
     0.00250         -75.6319688288638 3210.2    3.842633 
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SHOCKON We have developed and implemented a simple ‘Hugoniostat’ to mimic 
shock compression in a MD simulation. The passage of a shock wave 
causes a change of density via uniaxial compression that is specified by 
the Hugoniot relation 

  
ρ = ρ0 / 1−U p Us( ) , where  ρ0  is the initial density, 

and 
 
U p  and  Us  are the particle and shock wave velocities, respectively.  

 The dynamic compression imparted by a shock wave can be captured in a 
small, periodic unit cell by noting that the shock wave produces the 
change in density given by the Hugoniot relation in the period of time 
required for the shock wave to traverse the simulation cell,   l0 / Us . Thus, 
during the passage of the shock wave, the length of the simulation cell 
parallel to the direction of the propagation of the shock wave will be 

  
l(t) = l0 −U pt , where   l0  is the length of the simulation cell before the shock 
arrives, and  t  is time, where   0 ≤ t < l0 / Us . 
= 1: Use the Hugoniostat during the MD run 

 = 0: Do not use the Hugoniostat. 
 
SHOCKSTART Specifies the time step at which the Hugoniostat will be applied. The 

Hugoniostat will stop distorting the simulation cell   l0 / (UsΔt)  time steps 
later. 

 
SHOCKDIR  Specifies the Cartesian direction along with the simulation cell will be 

distorted (1 = x, 2 = y, 3 = z). 
 
UPARTICLE The particle velocity in units of m/s. 
 
USHOCK The shock wave velocity in units of m/s. 
  
V.A.4 ./TBparam/bondints.dat 
 
This file contains the parameters for the GSP functions for each of the Slater-Koster bond 
integrals. LATTE gives the user the option to define a radial scaling individually for each 
bond integral. The number of bond integrals depends on basis of each element as well as 
the number of elements. 
 Recall that, 
 

hll 'τ (R) =
hll 'τ (R0 )S(R) R ≤ R1

Bk R − R1( )k
k=0

5

∑ R1 < R ≤ Rcut

⎧

⎨
⎪

⎩
⎪

 

 
where 
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⎥
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Thus, the radial dependence of each bond integral is described completely by the seven 
adjustable parameters h(R0 ) , R0 , R1 , Rcut , n , nc , and Rc . The six parameters Bk{ }  are 
not adjustable – they are determined uniquely by the conditions that at R = R1  the cut-off 
tail should match the corresponding GSP function in value and first and second 
derivative, and at R = Rcut  the value and first and second derivative of the cut-off tail 
should equal zero. The parameters Bk{ }  are calculated in LATTE when the GSP 
parameters are read from file. 
 An example of the format of ./TBparam/bondints.dat is given below: 
 
  
 
 
 
 
 
 
 
 
where the parameter Noints= specifies the number of GSP functions to be read into 
LATTE. The only entries in the remainder of the file that may not be self-explanatory 
given the preamble in this subsection are the Kind identifiers for the ll 'τ  bond integrals. 
These are: 
 
sss ≡ ssσ  
sps ≡ spσ  
pps ≡ ppσ  
ppp ≡ ppπ  

 
and LATTE is written such that hspσ = −hpsσ . However, LATTE can handle the situation 
where we have two sp-valent elements and p(element 1)s(element 2) is not the same as 
p(element 2)s(element 1). Nevertheless, we never define 

 
hpsσ , in the input file, only 

 
hspσ . 

V.A.5 ./TBparam/electrons.dat 
 
Parameters relating mainly to free atoms are defined for each element in 
./TBparam/electrons.dat. An example of the format and detailed descriptions of each 
entry are provided below. 
 
 
 
 
 

Noints= 7 
Element1 Element2 Kind  h(R_0)      R_0   R_c      n           n_c      R_1 R_cut 
C        C        sss  -4.986742022 1.531 2.242063 2.56158     5.982062 2.0 3.0 
C        C        sps   4.661822786 1.531 0.524225 0.597312    0.883757 2.0 3.0 
C        C        pps   5.428514026 1.531 0.318689 6.291311e-4 4.167031 2.0 3.0 
C        C        ppp  -1.954959    1.531 1.0075   1.645437    0.292716 2.0 3.0 
H        H        sss  -7.521920    0.743 0.128033 0.090587    1.256029 1.5 2.5 
H        C        sss  -5.928782    1.093 0.858752 0.565763    1.272500 2.0 3.0 
H        C        sps   7.279468    1.093 1.540020 0.811385    2.511200 2.0 3.0 

Noelem= 2 
Element Basis  Numel   Es         Ep        Mass   HubbardU   Iss  Isp  Ipp 
C       sp     4.0    -10.966922 -2.767504  12.01  9.9986    -0.5 -0.7 -0.7 
H       ss     1.0    -5.365000   0.0       1.0079 12.8437   -2.5  0.0  0.0 
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The first entry, Noelem=, specifies the number of sets of atomic parameters to be read 
from the file. The header entries on the next line are fairly self-explanatory, nevertheless: 
 
Element The chemical symbol of the element. This must be consistent across all of 

the input files. 
 
Basis Specifies the valence orbitals possessed by each element where ss 

corresponds to one valence s orbital per atoms, and sp to one valence s 
orbital and three p orbitals (px, py, and pz) per atom. 

 
Numel Specifies the number of valence electrons on an isolated atom of each 

element, Ne . The total number of electrons in the system will be equal to 

Ne
total = Ne

i
i=1

Natoms∑ , but of course when the self-consistent transfer of 
charge between atoms is enabled, we determine partial charges by 
calculating the Mulliken charges relative to the value of Ne . 

 
Es The energy of the valence s orbital on a free atom in units of eV. 
 
Ep The energy of the valence p orbitals on a free atom in units of eV. 
 
Mass The atomic mass of the element in units of a.m.u. 
 
HubbardU The value of the Hubbard U for each element in units of eV.  
 
Iss The value of the Stoner-like parameter, in units of eV, that describes the 

splitting of the molecular orbital energies resulting from the spin 
polarization of valence s orbitals. 

 
Isp The value of the Stoner-like parameter, in units of eV, that couples the 

spin-polarization of the valence p(s) orbitals to the valence s(p) orbitals. 
 
Ipp The value of the Stoner-like parameter, in units of eV, that describes the 

splitting of the molecular orbital energies resulting from the spin 
polarization of valence p orbitals.  

 
V.A.6 ./TBparam/ppots.dat 
 
The parameters for the short-range and long-range pair potentials along with the positions 
of the start and end of the joining and cut-off functions are provided in 
./TBparam/ppots.dat. An example of the format of this file and a detailed description 
of each entry are provided below. 
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Nopps Specifies the total number of pair potentials to be read from file. Each pair 

potential is described in a block of parameters whose last line is Done. 
 
Max_k Specifies the maximum number of node points used in the evaluation of 

the short range pairwise term (see Eqn. (13)) in any of the Nopps pair 
potentials to be read. This parameter is included in the input file to assist 
with the dimensioning of arrays in LATTE rather than for any physical 
reason. 

 
ELE1: ELE2: Specify the pair of elements that will interact via the corresponding pair 

potential. The order of the elements is not important but only one of ELE1: 
X ELE2: Y and ELE1: Y ELE2: X need to be defined. 

 
k: Specifies the actual number of node points in the short-range pair 

potentials between elements ELE1: and ELE2:. Note that k: ≤ Max_k. 
 

Nopps= 3 Max_k= 4 
ELE1: C ELE2: C k: 4 
Rk      Ak 
1.5307  129.788382 
1.9000 -3.614438 
2.4000  7.169733 
3.0000  1.816112 
Join_R1: 2.0 Join_Rcut: 2.6 
vdW_C: 27.787715795 
vdW_R1: 8.5 vdW_Rcut: 10.0 
Done 
ELE1: H ELE2: H k: 4 
Rk      Ak 
0.7428  35.32452626 
1.0     4.40710494383 
1.6     9.30030199743 
2.7     0.124942629563 
Join_R1: 2.3 Join_Rcut: 2.6 
vdW_C: 1.1274666209 
vdW_R1: 8.5 vdW_Rcut: 10.0 
Done 
ELE1: C ELE2: H k: 4 
Rk      Ak 
1.0933  17.56543067 
1.3     27.2682130272 
1.85    4.01861782146 
2.4     3.09839775397 
Join_R1: 2.0 Join_Rcut: 2.3 
vdW_C: 5.99291873107 
vdW_R1: 8.5 vdW_Rcut: 10.0 
Done 
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Rk    Ak The value of the k: node points, Rk , and the corresponding coefficients, 
Ak , are listed below the corresponding headers in units of Å and eV, 
respectively. 

 
Join_R1: Specifies in units of Å the radial position of the start of the function that 

joins smoothly the short-range pair potential to the long-range van der 
Waals pair potential. The parameters {B} for the joining function are 
calculated within LATTE. 

 
Join_Rcut: Specifies in units of Å the radial position of the end of the function that 

joins smoothly the short-range pair potential to the long-range van der 
Waals pair potential. 

 
vdW_C: Specifies in units of eV the value of the parameter C in the van der Waals-

like −C R6  pair potential between elements ELE1: and ELE2:. 
 
vdW_R1: Specifies in units of Å the radial position of the start of the cut-off tail that 

is added to the long-range pair potential. The parameters {B} for the cut-
off tail are calculated with LATTE. 

 
vdW_Rcut: Specifies in units of Å the radial position the end of the cut-off tail that is 

added to the long-range pair potential. 
 
V.B Other files 
 
V.B.1 Files for plotting the radial dependences of model parameters 
 
 During the initialization of a static calculation or MD simulation LATTE will 
write the files ./GSPscaling.dat and ./ppot_plot_k.*.dat where the value of the 
asterisk run from 1 to the total number of pair potentials employed in the simulation, 
Nopps. These files can be used to plot the radial dependence of the bond integrals and 
pair potentials, respectively. The order of the GSP functions written in  
./GSPscaling.dat is the same as the order employed in ./TBparam/bondints.dat. 
 
V.B.2 Relaxed coordinates 
 
 The file ./restartREL.dat will be written upon the termination of a molecular 
statics relaxation (RELAX= 1 in ./TBparam/control.in) based on the maximum number 
of iterations or the tolerance on the maximum force. This file contains the coordinates of 
the atoms at the last iteration of the relaxation procedure. 
 
V.B.3 Features to come 
 
 Too numerous to mention – stay tuned to our savannah page  
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VI. Postamble 
 
VI.A Problems, bugs, etc. 
 
 In the (inevitable) event you identify a bug, mistake, or any ‘issue’ with LATTE, 
please contact the one developers. We are happy to help, and only with community 
involvement will LATTE improve.  
 
VI.B Feature requests 
 
 If LATTE doesn’t do something you think it should, please let us know. If you’ve 
developed something for LATTE and would like to see it added to the main distribution, 
send us the source code along with documentation for the manual and we’ll do our best.  
 
VII. LATTE Developers 
 
Marc Cawkwell:  cawkwell-at-lanl.gov 
Ed Sanville:   edsanville-at-gmail.com 
Anders Niklasson:  amn-at-lanl.gov 
Nicolas Bock:   nbock-at-lanl.gov 
Josh Coe:   jcoe-at-lanl.gov 
Sven Rudin:   srudin-at-lanl.gov 
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