
Developer’s Guide
0.5.18

Mobius Forensic Toolkit

c©2008,2009,2010,2011,2012,2013 Eduardo Aguiar



2 Mobius Forensic Toolkit — Developer’s Guide



Contents

1 Introduction 1

2 Developing extensions 3
2.1 Opening an extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Creating a new extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Mobius’ Software Architecture 7
3.1 advertise/call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 connect/emit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Datasources 11
4.1 services available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Mobius Forensic Toolkit — Developer’s Guide 3



4 CONTENTS

Mobius Forensic Toolkit — Developer’s Guide



1
Introduction

Nowadays, open source forensic tools are domain specific. Each tool tries to solve a problem of the

investigation scope, and some do it very well. Unfortunately, they lack integration and their development

is made harder because of the absence of common code, and therefore of code reuse. Their outputs are

not standardized, and most of them uses command line interface.

The Mobius Forensic Toolkit is a framework to develop forensic tools. It is written in Python, using

PYGTK and PyCairo. It is very extensible through specialized programs called extensions, and these

programs share services, program environment and have access to a unified case model.

This guide is focused on developing extensions for the Mobius Forensic Toolkit framework. Sample

codes are presented when suitable. It is a work in progress and does not intend to be a complete reference

guide.

Mobius Forensic Toolkit — Developer’s Guide 1



2 Introduction

Mobius Forensic Toolkit — Developer’s Guide



2
Developing extensions

The Mobius Forensic Toolkit is implemented using extensions. Each extension is a separated program that

runs on its own independent namespace. The Extension Builder is an extension that was specifically made

to edit extensions. It is a complete IDE that handles the underlying extensions and services structure,

with code editing capabilities.

To start Extension Builder, click on tools→Extension Builder menu option. A window like the

one shown in figure 2.1 will be opened.

2.1 Opening an extension

After you have started Extension Builder, click on Open menu option or on the corresponding icon in the

toolbar, to open an extension.

Mobius Forensic Toolkit distribution files (.tar.gz, .tar.bz2, or .zip) have a directory named

extensions where you can find all extensions that are distributed inside those packages. Feel free to

open those extensions, and even to create new ones based upon their source codes. In this example, we

have selected all extensions from extensions directory (figure 2.2).

To use an extension you have modified, you must install it using Mobius main window tools option.

2.2 Creating a new extension

As told before, you can open an existing extension, modify its source codes and save it as a new extension.

But you can also start with a fresh new one. Click on New menu option or on the corresponding icon at

toolbar, to create an extension.

Change your extension properties using properties option, and it will open up a dialog (figure 2.3).

Mobius Forensic Toolkit — Developer’s Guide 3



4 Developing extensions

Figure 2.1: Extension Builder running

Mobius Forensic Toolkit — Developer’s Guide



2.2 Creating a new extension 5

Figure 2.2: Extension Builder showing extensions

Mobius Forensic Toolkit — Developer’s Guide



6 Developing extensions

Figure 2.3: Extension Builder properties dialog

Mobius Forensic Toolkit — Developer’s Guide



3
Mobius’ Software Architecture

The Mobius framework is solely based on extensions, independent programs that run on their own sand-

box, but that can interact through the global object gdata.mediator. This object is the only one that

is shared among extension instances and is used as a mediator in two different ways: a) into the bul-

letin board pattern, where one extension advertises a service that might be called by any extension,

including the advertiser extension; b) as a event broadcaster, where one extension emits an event and

the extensions that are connected to this event receive a signal. The following sections show both kind

of communication among extensions.

3.1 advertise/call

Figure 3.1: advertise/call: a) extension A advertises service “myservice”; b) extension B calls service
“myservice’; c) gdata.mediator calls service callback function, passing back the function return value to
extension B.

Mobius Forensic Toolkit — Developer’s Guide 7



8 Mobius’ Software Architecture

def ca l lback_funct ion ( s ) :
return " h e l l o ␣" + s

gdata . mediator . adv e r t i s e ( "myservice " , ca l lback_funct ion )

Figure 3.2: advertise/call extension A code

value = gdata . mediator . c a l l ( "myservice " , " user " )
print value # shows " h e l l o user "

Figure 3.3: advertise/call extension B code

3.2 connect/emit

Figure 3.4: connect/emit: a) extensions B and C connect to event “event-1”, passing callback functions
to be called; b) extension A emits an event “event-1” along with args; c) extensions B and C callbacks
are called by the gdata.mediator object.

def ca l l ba ck ( case ) :
print " extens i on ␣B−>event−1␣on␣ case ␣’%s ’ " % case . name

gdata . mediator . connect ( " event−1" , c a l l b a ck )

Figure 3.5: connect/emit: extension B code

def ca l l ba ck ( case ) :
print " extens i on ␣C−>event−1␣on␣ case ␣’%s ’ " % case . name

gdata . mediator . connect ( " event−1" , c a l l b a ck )

Figure 3.6: connect/emit: extension C code

The code shown in figure 3.2 is the generated code of extension date-code. It connects to the event

object.attribute-modified which is triggered every time an object’s attribute is modified.

Mobius Forensic Toolkit — Developer’s Guide



3.2 connect/emit 9

. . .
i f some_condition :

gdata . mediator . emit ( ’ event−1 ’ , case )

Figure 3.7: connect/emit: extension A code

def ca l l ba ck ( obj , attr_id , old_value , va lue ) :
i f attr_id == ’ manufacturing_date ’ and 4 <= len ( value ) <= 5 :
Y = in t ( va lue [ 0 : 2 ] )
W = in t ( va lue [ 2 : −1 ] )
D = in t ( va lue [ −1 : ] )

# f i s c a l year beg in s at f i r s t sa turday o f Ju ly

d = datet ime . date (Y + 1999 , 7 , 1)
i f d . weekday ( ) < 6 :

days_to_saturday = 5 − d . weekday ( )
else :

days_to_saturday = 6
d += datet ime . t imede l ta ( days=days_to_saturday )

# Add date code ’ s weeks and days

d += datet ime . t imede l ta ( weeks=W − 1 , days=D − 1)

obj . manufacturing_date = d . i s o f o rmat ( )

gdata . mediator . connect ( ’ ob j e c t . a t t r i bu t e−modi f i ed ’ , c a l l b a ck )

Figure 3.8: connect/emit: date-code extension code

Mobius Forensic Toolkit — Developer’s Guide



10 Mobius’ Software Architecture

Mobius Forensic Toolkit — Developer’s Guide



4
Datasources

Datasources are objects that handle access to data. Each case item has an attribute datasource that

can be assigned by the user and contains information on how to retrieve the data. The figure 4 illustrates

an example on how to use the datasources:

datasource = item . datasource

# check i f da tasource i s a v a i l a b l e

i s_ava i l ab l e = gdata . mediator . c a l l ( ’ datasource . i s−av a i l a b l e ’ , datasource )
print ’ datasource ␣ i s ␣ a v a i l a b l e : ’ , i s_ava i l ab l e

# r e t r i e v e metadata

metadata = gdata . mediator . c a l l ( ’ datasource . r e t r i e v e−metadata ’ , datasource )

for attr_id , attr_name , attr_value in metadata :
print attr_id , attr_name , attr_value

# read some by t e s . . .

reader = gdata . mediator . c a l l ( ’ datasource . get−reader ’ , datasource )
i f reader :

r eader . open ( )
data = reader . read (512)
reader . c l o s e ( )

# ge t datasource path , when a v a i l a b l e

path = gdata . mediator . c a l l ( ’ datasource . get−path ’ , datasource )

Figure 4.1: using datasources services

Mobius Forensic Toolkit — Developer’s Guide 11



12 Datasources

4.1 services available

• datasource.get-metadata returns a list of tuples containing the attribute ID, attribute name and

attribute value of metadata.

metadata = gdata . mediator . c a l l ( ’ datasource . r e t r i e v e−metadata ’ , datasource )

for attr_id , attr_name , attr_value in metadata :

print attr_id , attr_name , attr_value

• datasource.get-path returns the datasource’s path, when available. The idea behind this service

is to allow third party tools to have access to the datasources. Note that extensions should not use

this feature, because not every type of datasource has a local path (e.g. remote datasources).

path = gdata . mediator . c a l l ( ’ datasource . get−path ’ , datasource )

print ’ l o c a l ␣path : ’ , path

• datasource.get-reader returns a reader object, when available, to read data from datasource.

reader = gdata . mediator . c a l l ( ’ datasource . get−reader ’ , datasource )

i f reader :

r eader . open ( )

data = reader . read (512)

reader . c l o s e ( )

• datasource.is-available returns True/False whether the datasource is available for reading,

e.g. whether the physical device is attached and ready.

i s_ava i l ab l e = gdata . mediator . c a l l ( ’ datasource . i s−a v a i l a b l e ’ , datasource )

print ’ datasource ␣ i s ␣ a v a i l a b l e : ’ , i s_ava i l ab l e

Mobius Forensic Toolkit — Developer’s Guide


