
Liboath API Reference Manual
i

Liboath API Reference Manual

Liboath API Reference Manual
ii

COLLABORATORS

TITLE :

Liboath API Reference Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY May 3, 2011

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Liboath API Reference Manual
iii

Contents

1 Liboath API Reference Manual 1

1.1 oath . 1

2 Index 11

Liboath API Reference Manual
1 / 11

Chapter 1

Liboath API Reference Manual

Liboath is a shared and static C library for handling OATH related technology such as HOTP.

Liboath and this manual are licensed under the LGPLv2.1+. This manual is actually automatically generated from the source
code. See COPYING in the package for more licensing information.

1.1 oath

oath —

Synopsis

#define OATHAPI
#define OATH_VERSION
#define OATH_VERSION_NUMBER
enum oath_rc;
int oath_init (void);
int oath_done (void);
const char * oath_check_version (const char *req_version);
int oath_hex2bin (char *hexstr,

char *binstr,
size_t *binlen);

const char * oath_strerror (int err);
const char * oath_strerror_name (int err);
#define OATH_HOTP_LENGTH (digits,

checksum)
#define OATH_HOTP_DYNAMIC_TRUNCATION
int oath_hotp_generate (const char *secret,

size_t secret_length,
uint64_t moving_factor,
unsigned digits,
bool add_checksum,
size_t truncation_offset,
char *output_otp);

int oath_hotp_validate (const char *secret,
size_t secret_length,
uint64_t start_moving_factor,
size_t window,
const char *otp);

Liboath API Reference Manual
2 / 11

int (*oath_validate_strcmp_function) (void *handle,
const char *test_otp);

#define oath_hotp_validate_strcmp_function
int oath_hotp_validate_callback (const char *secret,

size_t secret_length,
uint64_t start_moving_factor,
size_t window,
unsigned digits,
oath_validate_strcmp_function strcmp_otp,
void *strcmp_handle);

#define OATH_TOTP_DEFAULT_TIME_STEP_SIZE
#define OATH_TOTP_DEFAULT_START_TIME
int oath_totp_generate (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
char *output_otp);

int oath_totp_validate (const char *secret,
size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
size_t window,
const char *otp);

int oath_totp_validate_callback (const char *secret,
size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
size_t window,
oath_validate_strcmp_function strcmp_otp,
void *strcmp_handle);

int oath_authenticate_usersfile (const char *usersfile,
const char *username,
const char *otp,
size_t window,
const char *passwd,
time_t *last_otp);

Description

Details

OATHAPI

#define OATHAPI

OATH_VERSION

#define OATH_VERSION "1.8.1"

Liboath API Reference Manual
3 / 11

Pre-processor symbol with a string that describe the header file version number. Used together with oath_check_version() to
verify header file and run-time library consistency.

OATH_VERSION_NUMBER

#define OATH_VERSION_NUMBER 0x01080100

Pre-processor symbol with a hexadecimal value describing the header file version number. For example, when the header version
is 1.2.3 this symbol will have the value 0x01020300. The last two digits are only used between public releases, and will otherwise
be 00.

enum oath_rc

typedef enum
{

OATH_OK = 0,
OATH_CRYPTO_ERROR = -1,
OATH_INVALID_DIGITS = -2,
OATH_PRINTF_ERROR = -3,
OATH_INVALID_HEX = -4,
OATH_TOO_SMALL_BUFFER = -5,
OATH_INVALID_OTP = -6,
OATH_REPLAYED_OTP = -7,
OATH_BAD_PASSWORD = -8,
OATH_INVALID_COUNTER = -9,
OATH_INVALID_TIMESTAMP = -10,
OATH_NO_SUCH_FILE = -11,
OATH_UNKNOWN_USER = -12,
OATH_FILE_SEEK_ERROR = -13,
OATH_FILE_CREATE_ERROR = -14,
OATH_FILE_LOCK_ERROR = -15,
OATH_FILE_RENAME_ERROR = -16,
OATH_FILE_UNLINK_ERROR = -17,
OATH_TIME_ERROR = -18

} oath_rc;

Return codes for OATH functions. All return codes are negative except for the successful code OATH_OK which are guaranteed
to be 0. Positive values are reserved for non-error return codes.

Note that the oath_rc enumeration may be extended at a later date to include new return codes.

OATH_OK Successful return

OATH_CRYPTO_ERROR Internal error in crypto functions

OATH_INVALID_DIGITS Unsupported number of OTP digits

OATH_PRINTF_ERROR Error from system printf call

OATH_INVALID_HEX Hex string is invalid

OATH_TOO_SMALL_BUFFER The output buffer is too small

OATH_INVALID_OTP The OTP is not valid

OATH_REPLAYED_OTP The OTP has been replayed

OATH_BAD_PASSWORD The password does not match

OATH_INVALID_COUNTER The counter value is corrupt

Liboath API Reference Manual
4 / 11

OATH_INVALID_TIMESTAMP The timestamp is corrupt

OATH_NO_SUCH_FILE The supplied filename does not exist

OATH_UNKNOWN_USER Cannot find information about user

OATH_FILE_SEEK_ERROR System error when seeking in file

OATH_FILE_CREATE_ERROR System error when creating file

OATH_FILE_LOCK_ERROR System error when locking file

OATH_FILE_RENAME_ERROR System error when renaming file

OATH_FILE_UNLINK_ERROR System error when removing file

OATH_TIME_ERROR System error for time manipulation

oath_init ()

int oath_init (void);

This function initializes the OATH library. Every user of this library needs to call this function before using other functions. You
should call oath_done() when use of the OATH library is no longer needed.

Note that this function may also initialize Libgcrypt, if the OATH library is built with libgcrypt support and libgcrypt has not
been initialized before. Thus if you want to manually initialize libgcrypt you must do it before calling this function. This is
useful in cases you want to disable libgcrypt’s internal lockings etc.

Returns : On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_done ()

int oath_done (void);

This function deinitializes the OATH library, which were initialized using oath_init(). After calling this function, no other OATH
library function may be called except for to re-initialize the library using oath_init().

Returns : On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_check_version ()

const char * oath_check_version (const char *req_version);

Check OATH library version.

See OATH_VERSION for a suitable req_version string.

This function is one of few in the library that can be used without a successful call to oath_init().

req_version : version string to compare with, or NULL.

Returns : Check that the version of the library is at minimum the one given as a string in req_version and return the actual
version string of the library; return NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

Liboath API Reference Manual
5 / 11

oath_hex2bin ()

int oath_hex2bin (char *hexstr,
char *binstr,
size_t *binlen);

Convert string with hex data to binary data.

Non-hexadecimal data are not ignored but instead will lead to an OATH_INVALID_HEX error.

If binstr is NULL, then binlenwill be populated with the necessary length. If the binstr buffer is too small, OATH_TOO_SMALL_BUFFER
is returned and binlen will contain the necessary length.

hexstr : input string with hex data

binstr : output string that holds binary data, or NULL

binlen : output variable holding needed length of binstr

Returns : On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_strerror ()

const char * oath_strerror (int err);

Convert return code to human readable string explanation of the reason for the particular error code.

This string can be used to output a diagnostic message to the user.

This function is one of few in the library that can be used without a successful call to oath_init().

err : liboath error code

Returns : Returns a pointer to a statically allocated string containing an explanation of the error code err.

Since 1.8.0

oath_strerror_name ()

const char * oath_strerror_name (int err);

Convert return code to human readable string representing the error code symbol itself. For example, oath_strerror_name(OATH_OK)
returns the string "OATH_OK".

This string can be used to output a diagnostic message to the user.

This function is one of few in the library that can be used without a successful call to oath_init().

err : liboath error code

Returns : Returns a pointer to a statically allocated string containing a string version of the error code err, or NULL if the error
code is not known.

Since 1.8.0

OATH_HOTP_LENGTH()

#define OATH_HOTP_LENGTH(digits, checksum) (digits + (checksum ? 1 : 0))

digits :

checksum :

Liboath API Reference Manual
6 / 11

OATH_HOTP_DYNAMIC_TRUNCATION

#define OATH_HOTP_DYNAMIC_TRUNCATION SIZE_MAX

oath_hotp_generate ()

int oath_hotp_generate (const char *secret,
size_t secret_length,
uint64_t moving_factor,
unsigned digits,
bool add_checksum,
size_t truncation_offset,
char *output_otp);

Generate a one-time-password using the HOTP algorithm as described in RFC 4226.

Use a value of OATH_HOTP_DYNAMIC_TRUNCATION for truncation_offset unless you really need a specific trunca-
tion offset.

To find out the size of the OTP you may use the OATH_HOTP_LENGTH() macro. The output_otp buffer must be have room
for that length plus one for the terminating NUL.

Currently only values 6, 7 and 8 for digits are supported, and the add_checksum value is ignored. These restrictions may be
lifted in future versions, although some limitations are inherent in the protocol.

secret : the shared secret string

secret_length : length of secret

moving_factor : a counter indicating the current OTP to generate

digits : number of requested digits in the OTP, excluding checksum

add_checksum : whether to add a checksum digit or not

truncation_offset : use a specific truncation offset

output_otp : output buffer, must have room for the output OTP plus zero

Returns : On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_hotp_validate ()

int oath_hotp_validate (const char *secret,
size_t secret_length,
uint64_t start_moving_factor,
size_t window,
const char *otp);

Validate an OTP according to OATH HOTP algorithm per RFC 4226.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

secret : the shared secret string

secret_length : length of secret

start_moving_factor : start counter in OTP stream

window : how many OTPs after start counter to test

otp : the OTP to validate.

Returns : Returns position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in OTP
window, or an error code.

Liboath API Reference Manual
7 / 11

oath_validate_strcmp_function ()

int (*oath_validate_strcmp_function) (void *handle,
const char *test_otp);

Prototype of strcmp-like function that will be called by oath_hotp_validate_callback() or oath_totp_validate_callback() to vali-
date OTPs.

The function should behave like strcmp, i.e., only ever return 0 on matches.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
oath_strcmp hash the test_otp OTP using the same hash, and then compare the results.

handle : caller handle as passed to oath_hotp_validate_callback()

test_otp : OTP to match against.

Returns : 0 if and only if test_otp is identical to the OTP to be validated.

Since 1.6.0

oath_hotp_validate_strcmp_function

#define oath_hotp_validate_strcmp_function oath_validate_strcmp_function

oath_hotp_validate_callback ()

int oath_hotp_validate_callback (const char *secret,
size_t secret_length,
uint64_t start_moving_factor,
size_t window,
unsigned digits,
oath_validate_strcmp_function ←↩

strcmp_otp,
void *strcmp_handle);

Validate an OTP according to OATH HOTP algorithm per RFC 4226.

Validation is implemented by generating a number of potential OTPs and performing a call to the strcmp_otp function, to
compare the potential OTP against the given otp. It has the following prototype:

int (*oath_validate_strcmp_function) (void *handle, const char *test_otp);

The function should behave like strcmp, i.e., only ever return 0 on matches.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
strcmp_otp hash the test_otp OTP using the same hash, and then compare the results.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

secret : the shared secret string

secret_length : length of secret

start_moving_factor : start counter in OTP stream

window : how many OTPs after start counter to test

Liboath API Reference Manual
8 / 11

digits : number of requested digits in the OTP

strcmp_otp : function pointer to a strcmp-like function.

strcmp_handle : caller handle to be passed on to strcmp_otp.

Returns : Returns position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in OTP
window, or an error code.

Since 1.4.0

OATH_TOTP_DEFAULT_TIME_STEP_SIZE

#define OATH_TOTP_DEFAULT_TIME_STEP_SIZE~30

OATH_TOTP_DEFAULT_START_TIME

#define OATH_TOTP_DEFAULT_START_TIME ((time_t) 0)

oath_totp_generate ()

int oath_totp_generate (const char *secret,
size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
char *output_otp);

Generate a one-time-password using the time-variant TOTP algorithm described in draft-mraihi-totp-timebased-07. The input
parameters are taken as time values.

The system parameter time_step_size describes how long the time window for each OTP is. The recommended value is 30
seconds, and you can use the value 0 or the symbol OATH_TOTP_DEFAULT_TIME_STEP_SIZE to indicate this.

The system parameter start_offset denote the Unix time when time steps are started to be counted. The recommended value
is 0, to fall back on the Unix epoch) and you can use the symbol OATH_TOTP_DEFAULT_START_TIME to indicate this.

The output_otp buffer must have room for at least digits characters, plus one for the terminating NUL.

Currently only values 6, 7 and 8 for digits are supported. This restriction may be lifted in future versions.

secret : the shared secret string

secret_length : length of secret

now : Unix time value to compute TOTP for

time_step_size : time step system parameter (typically 30)

start_offset : Unix time of when to start counting time steps (typically 0)

digits : number of requested digits in the OTP, excluding checksum

output_otp : output buffer, must have room for the output OTP plus zero

Returns : On success, OATH_OK (zero) is returned, otherwise an error code is returned.

Since 1.4.0

Liboath API Reference Manual
9 / 11

oath_totp_validate ()

int oath_totp_validate (const char *secret,
size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
size_t window,
const char *otp);

Validate an OTP according to OATH TOTP algorithm per draft-mraihi-totp-timebased-07.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

secret : the shared secret string

secret_length : length of secret

now : Unix time value to validate TOTP for

time_step_size : time step system parameter (typically 30)

start_offset : Unix time of when to start counting time steps (typically 0)

window : how many OTPs after/before start OTP to test

otp : the OTP to validate.

Returns : Returns position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in OTP
window, or an error code.

Since 1.6.0

oath_totp_validate_callback ()

int oath_totp_validate_callback (const char *secret,
size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
size_t window,
oath_validate_strcmp_function ←↩

strcmp_otp,
void *strcmp_handle);

Validate an OTP according to OATH TOTP algorithm per draft-mraihi-totp-timebased-07.

Validation is implemented by generating a number of potential OTPs and performing a call to the strcmp_otp function, to
compare the potential OTP against the given otp. It has the following prototype:

int (*oath_validate_strcmp_function) (void *handle, const char *test_otp);

The function should behave like strcmp, i.e., only ever return 0 on matches.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
strcmp_otp hash the test_otp OTP using the same hash, and then compare the results.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Liboath API Reference Manual
10 / 11

secret : the shared secret string

secret_length : length of secret

now : Unix time value to compute TOTP for

time_step_size : time step system parameter (typically 30)

start_offset : Unix time of when to start counting time steps (typically 0)

digits : number of requested digits in the OTP

window : how many OTPs after start counter to test

strcmp_otp : function pointer to a strcmp-like function.

strcmp_handle : caller handle to be passed on to strcmp_otp.

Returns : Returns position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in OTP
window, or an error code.

Since 1.6.0

oath_authenticate_usersfile ()

int oath_authenticate_usersfile (const char *usersfile,
const char *username,
const char *otp,
size_t window,
const char *passwd,
time_t *last_otp);

Authenticate user named username with the one-time password otp and (optional) password passwd. Credentials are read (and
updated) from a text file named usersfile.

usersfile : string with user credential filename, in UsersFile format

username : string with name of user

otp : string with one-time password to authenticate

window : how many future OTPs to search

passwd : string with password, or NULL to disable password checking

last_otp : output variable holding last successful authentication

Returns : On successful validation, OATH_OK is returned. If the supplied otp is the same as the last successfully authenticated
one-time password, OATH_REPLAYED_OTP is returned and the timestamp of the last authentication is returned in l-

ast_otp. If the one-time password is not found in the indicated search window, OATH_INVALID_OTP is returned.
Otherwise, an error code is returned.

Liboath API Reference Manual
11 / 11

Chapter 2

Index

O
oath_authenticate_usersfile, 10
oath_check_version, 4
oath_done, 4
oath_hex2bin, 5
OATH_HOTP_DYNAMIC_TRUNCATION, 6
oath_hotp_generate, 6
OATH_HOTP_LENGTH, 5
oath_hotp_validate, 6
oath_hotp_validate_callback, 7
oath_hotp_validate_strcmp_function, 7
oath_init, 4
oath_rc, 3
oath_strerror, 5
oath_strerror_name, 5
OATH_TOTP_DEFAULT_START_TIME, 8
OATH_TOTP_DEFAULT_TIME_STEP_SIZE, 8
oath_totp_generate, 8
oath_totp_validate, 9
oath_totp_validate_callback, 9
oath_validate_strcmp_function, 7
OATH_VERSION, 2
OATH_VERSION_NUMBER, 3
OATHAPI, 2

	Liboath API Reference Manual
	oath

	Index

