Pedro

version 1.6, 23 August 2011

Peter Robinson (pjr@itee.uq.edu.au)

mailto:pjr@itee.uq.edu.au

This manual is for Pedro (version 1.6, 23 August 2011), a subscription/notification system.
Copyright (©) 2006-2011 Peter Robinson

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

Table of Contents

1 Introduction............................... 1
2 Running Pedro............................ 2
3 Syntaxiiiiiiiiii i i 3
3.1 NUmMDbETS . . oo 3
3.2 A0S . oo 3
3.3 StIINgS . oo 3
3.4 Variables 3
3.5 Compound Terms 4
3.6 LiStS .o 4
3.7 OPETALOTS. o ottt e 4
4 Notifications.................... ... 6
5 Subscriptions............... 7
6 Removing Subscriptions................... 11
7 Registrations............................. 12
8 Removing Registrations................... 13
9 ConnectingtoPedro...................... 14
10 Denial of Service 15
11 Libraryccoiiiiiiinnennnn. 16
12 APIs. ...t i e 17
12.1 G APL. . 17
12.2 Python AP 17
12.3 Java APL 18
Appendix A Copying This Manual 20
A.1 GNU Free Documentation License 20

PedroIndexcovi v ieeiesnennn. 27

Chapter 1: Introduction 1

1 Introduction

Pedro is a subscription/notification system based on Prolog technology. The main compo-
nent of the system is the Pedro server that is responsible for managing subscriptions from
clients and for forwarding client notifications to clients with matching subscriptions.

From the clients point of view subscriptions and notifications are strings that represent
Prolog terms. The server parses these strings into Prolog terms and treats subscriptions in
a similar way to Prolog clauses and notifications in a similar way to Prolog queries to be
matched against subscriptions.

Readers unfamiliar with Prolog are referred to the following books.
e Prolog Programming for Artificial Intelligence, Bratko
e The Art of Prolog, Sterling and Shapiro
e Programming in Prolog, Clocksin and Mellish

e Techniques of Prolog Programming, Van Lee

Chapter 2: Running Pedro 2

2 Running Pedro

Pedro is a daemon and is started using the following command.
pedro [OPTIONS..]
Using the help option -7 produces the following output.

Usage:
pedro [OPTION...]

Help Optioms:
-7, ——help Show help options

Application Options:

--version Show version

-P, ——Port=p Use port p for connecting (default 4550)

-8, --Size The size for various areas (default 1024)
-L, —-Logfile=logfile Use logfile for logging

-A, --Admin=admin_machine Use admin_machine for receiving all messages

If no log file is supplied then /dev/null is used. If stdout is used for the log file then
Pedro will not be a daemon and the log information will be written to standard output.

If an admin machine is supplied then a process registering the name ’admin’ on that
machine will receive all message including peer-to-peer messages between other processes.

Otherwise the supplied log file must be writable by the caller.

Chapter 3: Syntax 3

3 Syntax

In this section we describe the syntax of the Prolog terms that are used for both subscriptions
and notifications. The syntax we use is standard Prolog syntax with a cut-down set of the
built-in prefix and infix operators.

3.1 Numbers

Pedro numbers are 32 bit integers in decimal notation and floating point numbers in decimal
and scientific notation.

Examples:

Integers: 42, -100
Doubles: 3.14, -1.3e-5

3.2 Atoms

The syntax of Pedro atoms fall into four categories:

1. A lower case letter followed by any sequence consisting of “_” and alphanumeric char-
acters.

Examples:
fred, al2, this_is_an_ATOM
2. Any combination of the following set of graphic characters.
=/+x<=>#Q\ &1 .7
Examples:

- I

3. Any sequence of characters enclosed by single quotes. The character “\” indicates an
escape sequence.

Examples:
’Fred’, ’it\’s’, ’\n’
4. ; [] and the open-close parenthesis pair

3.3 Strings

Pedro strings are sequences of characters enclosed by double quotes. As with quoted atoms,
the character “\” indicates an escape sequence.

Examples:
"This is a string", "A string with a ’, a \" and a newline \n"

3.4 Variables

The syntax of Pedro variables fall into two categories.

1. An upper case letter or “_” followed by any sequence consisting of “_” and alphanumeric
characters.

Examples:
X, X_23, _fred_12

Chapter 3: Syntax 4

(1]

2. The “anonymous” variable

Note that repeated occurrences of a variable token of the first category in a string
representing a Pedro term represent the same variable. This is not the case for anonymous
variables: each occurrence represents a different variable.

3.5 Compound Terms

The syntax of a compound Pedro term consists of an atom token (the functor) followed by
an opening bracket followed by a comma separated list of syntax representing Pedro terms
(the arguments) followed by a closing bracket.

A compound term must have at least one argument. The arity of a compound term is
the number of arguments.

Examples:
f(a), g(Var, "string", 42, h(a, g(b)))

3.6 Lists
The atom [] represents the empty list.

The syntax of a non-empty Pedro list consists of an opening square bracket followed by
a comma separated list of syntax representing Pedro terms (optionally followed by a “|”
followed by syntax representing Pedro term) followed by a closing square bracket.

Examples:
(1, [v, a, £(2), [a,b,c], "string’], [H1, H2|T]

The list syntax involving “|” is typically used to describe list patterns. For example,
the third example above might be used to match against lists with at least two elements

(H1 and H2) and whose tail is T.

3.7 Operators

Below is the table of operators used in Pedro. The table lists the declarations of the oper-
ators as used in Prolog. In Prolog, the declaration op(Prec, Assoc, Ops) declares the list
of operators Ops to have precedence Pred and associativity Assoc. The smaller the prece-
dence, the more tightly the operator binds. For the associativity argument xfy describes a
right-associative infix operator, xfx describes a non-associative infix operator, yfx describes
a left-associative infix operator, and fy describes an associative prefix operator.

op(1100, xfy, [; 1).
op(1050, xfy, [-> 1).
op(1000, xfy, [’,” 1).

op(700, xfx, [=, is, <, =<, > , >=]).

op(500, yfx, [+, -, /\ , \/ D.

op(400, yfx, [* , / , // , rem , mod , << , >>]).
op(200, xfx, [*x 1).

op(200, fy, [+, - 1).
op(100, xfx, [@ 1).
op(50, xfx, [: 1).

Examples:

Chapter 3: Syntax 5

The string "X is A + - B + C*D" parses to the term is(X, +(+(4, -(B)), *(C, D))
The string "Gl -> G2 ; G3" parses to the term ;(->(G1, G2), G3)
Note that comma is used both as an argument separator and as an infix operator. Each
operator used at the top-level of an argument of a list or compound term has to have
precedence less than 1000. If an argument has an operator of higher precedence then the
argument needs to be enclosed in brackets.
Examples:

The string "f((Gl, G2))" parses to the compound term f(’,’(Gl, G2))
The string "[G, (G1;G2)]" parses to the list [G, ;(G1l, G2)]

Chapter 4: Notifications 6

4 Notifications

Notifications are newline terminated strings sent from clients to the Pedro server. A valid
notification is a string that represents an atom, a list or a compound Pedro term (with a
following newline). The Pedro server reads characters from a client until it gets a newline.
The server will then attempt to parse the characters up to (but not including) the newline
as a compound Pedro term. If this succeeds then the server processes the notification term,;
otherwise the string is ignored.

Examples (trailing newline removed):

Valid:
info(fred, 42, "some string")

Invalid (not compound, atom or list):
llbadll
X

Invalid (does not parse):
f(a;b)
£([a,b))

The server will acknowledge the client with a 1 if the notification is valid and a 0
otherwise.

Chapter 5: Subscriptions 7

5 Subscriptions

Like notifications, subscriptions are newline terminated strings that parse as compound Pe-
dro terms. The functor of each subscription term is always subscribe and has arity 3. In
other words, each subscription term is of the form subscribe(Head, Body, Rock). Fol-
lowing the similarity between subscriptions and Prolog clauses we refer to the first argument
as the head of the subscription and the second argument as the body of the subscription.

The third argument is commonly referred to as a rock. This is an integer and its meaning
is determined by each client. When the Pedro server matches a notification against the sub-
scription, the server sends the notification string together with the rock to the subscribing
client. A given client can use the rock to, for example, refer to a message queue or a thread
and thereby determine how to process the notification.

The Pedro server will match a notification against a subscription if the notification term
unifies with the head of the subscription and, with this unifier, the goal in the body of
the subscription is satisfied. Readers are referred to Prolog references for descriptions of
unification, variable binding, dereferencing, occurs check, backtracking and goal evaluation.

When the server matches a notification against a subscription it will send the string
consisting of the subscribers rock followed by a space followed by the notification string
(including the newline).

The server will acknowledge an attempt by a client to subscribe with a string consisting
of an integer (an ID) followed by a newline. The ID will be 0 if the subscription attempt
fails (the string is too long, it doesn’t parse, or does not represent a valid subscription term).
If the subscription attempt succeeds then the ID will be a unique (for that client) positive
integer. This ID is used when the client chooses to unsubscribe.

The following table lists the “basic” valid subscription goals and their semantics that
can be used in the body of subscriptions. As with Prolog, whenever a unification is carried
out, the variable bindings implied by the unifier are applied.

Note that, unlike most Prologs, unification in Pedro uses the occurs check.
true Always succeeds
fail Always fails
T1=T2 Succeeds if and only if the terms T1 and T2 unify.

T1 is T2 Succeeds if and only if T1 unifies with the evaluation of the the arithmetic
expression T2. The goal produces a type error if T2 does not represent an
arithmetic expression that can be fully evaluated (to a number). The valid
arithmetic expressions are described later.

T1 < T2 Succeeds if and only if the arithmetic expression T1 evaluates to a number that
is less than the evaluation of the arithmetic expression T2. The goal produces
a type error if either term does not represent an arithmetic expression that can
be fully evaluated (to a number).

T1 =<T2 The same as above, except that a less-or-equal test is applied.
T1 > T2 The same as above, except that a greater-than test is applied.

T1 >=T2 The same as above, except that a greater-or-equal test is applied.

Chapter 5: Subscriptions 8

member (X, L)
Succeeds if and only if L is a “cons” pair and X unifies with the head element
of L or X is a member of the tail of L.

split(L1, L2, L3)
Succeeds if and only if the concatenation of the lists L2 and L3 unifies with L1.
The list L1 must be supplied.

splitstring(S1, S2, S3)
Succeeds if and only if the concatenation of the strings S2 and S3 unifies with
S1. The string S1 must be supplied.

number (T)
Succeeds if and only if T is a number.

atom(T) Succeeds if and only if T is an atom.

string(T)
Succeeds if and only if T is a string.

1list(T) Succeeds if and only if T is either the empty list or a “cons” pair.

The following table lists the valid meta-level subscription goals — i.e. goals that take
valid goals as arguments.

Gl , G2 Conjunction: succeeds if and only if first the goal G1 succeeds and then the goal
G2 succeeds.

Gl ; G2 Disjunction: succeeds if and only if either the goal G1 succeed or the goal G2
succeeds.

Gl ->G2 ; G3
If-then-else: If G1 succeeds then alternative solutions for G1 are removed and
the goal succeeds if and only if G2 succeeds. Otherwise, the goal succeeds if and
only if G3 succeeds.

not (G) Negation: succeeds if and only if G fails. In Prolog this form of negations is
called “unsafe negation”.

once (G) Succeeds if and only if G succeeds. Alternative solutions are removed.

The following are valid arithmetic expressions. Numbers are valid arithmetic expressions
and in the table below, E1 and E2 are valid arithmetic expressions.

pi Pi
e E
- E1 Negation

El + E2 Addition

El - E2 Subtraction

E1l x E2 Multiplication
El / E2 Division

E1 // E2 Integer division

Chapter 5: Subscriptions 9

El1 *x E2 Exponentiation

El rem E2 Remainder (E1 and E2 are integer expressions)
El mod E2 Modulo (E1 and E2 are integer expressions)

E1 /\ E2 Bitwise And (E1 and E2 are integer expressions)
E1 \/ E2 Bitwise Or (E1 and E2 are integer expressions)
\E1 Bitwise Negation (E1 is an integer expression)
E1 << E2 Shift Left (E1 and E2 are integer expressions)
E1 >>E2 Shift Right (E1 and E2 are integer expressions)
abs(E1) Absolute Value

round (E1)
Round

floor(E1)
Floor

ceiling(E1)

Ceiling
sqrt(E1) Square Root
sin(E1) Sin
cos(E1) Cos
tan(E1) Tan
asin(E1) Arcsin
acos(E1) Arccos
atan(E1) Arctan
log(E1) Log (base e)

The following are examples of valid subscriptions. In all these examples, the rock is zero

but can be any integer (e.g. thread ID).

e subscribe(info(fred, X), true, 0) : in this example, the goal is true and will
always succeed. Hence, this subscription will match against any notification the unifies
with the head term — i.e. any compound term whose functor is info, has arity 2 and
has first argument fred

e subscribe(data(L), (member(height =H, L), H> 1000), 0) : the head of this sub-
scription matches against any notification with functor data and arity 1. The subscrip-
tion will match a notification if the notifications argument is a list that contains a term
of the form height = H and H is a number greater than 1000. Note that, as with Prolog,
operators can be used to build terms (even when the operator semantics is not being
used). In this case the operator = is just a convenient infix operator used to construct
an arity 2 compound term.

Chapter 5: Subscriptions 10

e subscribe(foo(X, X), (X< 10; X > 20), 0) : the head matches against any notifi-
cation with functor foo, has arity 2, and whose arguments are unifiable. The body
succeeds if X is either less than 10 or greater then 20.

e subscribe(str(S), (splitstring(S, _, S2), splitstring(S2, "hello", _)),
0): this subscription matches any notification with functor str and arity 1 and whose
argument is a string containing "hello" as a substring.

e subscribe(foo(X, Y), (atom(X) —> number(Y), Y > 0 ; atom(Y)), 0): this
subscription matches any notification with functor foo, has arity 2, and if its first
argument (X) is an atom then Y is a number greater then 0, else Y is an atom.

The following example illustrates what happens when type errors occur in an attempted
match of a subscription and a notification.

Consider the subscription

subscribe(foo(X, ¥Y), (X<0->Y>10; Y<10), 0)

and the notification

foo(bar, 0)

In this case the head of the subscription matches the notification but X is not a number
and so the test X < 0 produces a type error which causes the attempted match to fail.

If the intention of the subscription was to test if X is a number less than 0 then it should
be written as follows.

subscribe(foo(X, Y), (number(X), X<0->Y> 10 ; Y<10), 0)

In this case the notification above will match.

Chapter 6: Removing Subscriptions 11

6 Removing Subscriptions

A client can remove a subscription by sending the newline terminated string
unsubscribe(ID) to the server, where ID is the ID of the subscription to be removed.
Recall the when a client makes a subscription, the server returns a client-unique ID for the
subscription. It is this ID that is used to remove the subscription.

It is the clients responsibility to keep track of the mapping between subscriptions and
IDs.

The server will acknowledge the client with a 1 if the unsubscription succeeds and a 0
otherwise.

Chapter 7: Registrations 12

7 Registrations

A client can register a name with the Pedro server. This name can be used by other
registered clients to provide peer-to-peer communication. This is done by sending the
following string (with a newline termination) to the Pedro server (where name is the name
being registered).

register (name)

The registered name must be an atom not containing the characters ’,’, ’:” and '@’.

The server will acknowledge the client with a 1 if the registration succeeds and a 0
otherwise.

Semantically, a registration is the same as a restricted form of subscription. Specifically,
a registration can be thought of as a subscription of the following form.

subscribe (p2pmsg(_:name@machine, _, _), true, 0)

where name is the name being registered (the name of this process) and machine is the
name of the machine on which the process is running. The restriction is that at most one
process on any given machine can register a given name.

The idea is that a notification of the form
p2pmsg(ToAddr, MyAddr, Msg)
where ToAddr and MyAddr are addresses of the form ID:Name@Machine will match a

registration subscription if the ToAddr of the notification unifies with the first argument of
the subscription.

The ID part of an address is optional and is ignored by the Pedro server. It is up to
the clients to determine how this argument is used. This might be, for example, used as
the name of a thread or message queue. The rock used when sending such notifications to
clients is always set to 0.

The ID part of an address can be elided from the notification if it is not required. It is
up to the clients to determine what to do if no ID is supplied.

The Name and Machine parts of ToAddr are either atoms or variables. The characters
7,7, 77 and '@ are not allowed to appear in Name or Machine. It is also possible for ToAddr
to be a variable in which case the semantics is the same as having an address with both

Name and Machine variables.

If Name is a variable then the notification will be sent to all registered processes on that
machine. If Machine is a variable then the notification will be sent to all processes with
that registered name. If both are variables then the notification will be sent to all registered
processes on all machines that have registered processes.

Note that MyAddr can be any valid address, but in practice the client should make sure
that this is its address. It will typically be used by the receiving client when responding to
a message.

Example:

The notification p2pmsg (foo@’foo.com.au’, bar@’bar.com.au’, info(fred,
[1,2,3])) is intended for the process with registered name foo on ’foo.com.au’ (note
that the process name and machine name must both be atoms). This client is registered
with the name bar.

Chapter 8: Removing Registrations 13

8 Removing Registrations

Registrations are removed by sending a newline terminated string of the form
deregister (name)
where name is the registered name of the process.

The server will acknowledge the client with a 1 if the deregistration succeeds and a 0
otherwise.

Chapter 9: Connecting to Pedro 14

9 Connecting to Pedro

The communication between each client and the Pedro server is via a pair of sockets. One
is used for two-way data transfer (e.g. notifications, subscriptions), the other is used for
the server to acknowledge messages from the client. This will be a 0 for invalid data from
the client and non-zero for valid data.

The creation of the two sockets is done as follows. Examples are given in the code for

the Python and Java APIs.

1.
2.

Create a socket in the client (this will be used to obtain information from the server)
Use connect to connect the socket to the Pedro server. Pedro will be listening for the
connection on a given port. The default port is 4550.

Read an IP address and two ports (sent by the server as a newline terminated string).
The IP address is to be used for the connection to the server. The two ports are for
connecting two sockets (for acknowledgements and for data).

4. Close the socket.

5. Create a socket in the client (this will be used for acknowledgements).

6. Use connect to connect the socket to the Pedro server for acknowledgements. Pedro

will be listening for the connection on the first of the two ports send by the server.

7. Read the client ID on this socket (sent by the server as a newline terminated string).

8. Create another socket in the client (this will be used for data).

9. Use connect to connect the socket to the Pedro server for data. Pedro will be listening

10.
11.

for the connection on the second of the two ports send by the server.
Send the client the client ID on the data socket (the same string the server sent above).

Read the status on the data socket. If the connection succeeds the status will be the
string "ok\n".

Chapter 10: Denial of Service 15

10 Denial of Service

Pedro’s was designed as a message transport for communicating agents, typically in a local
area network. It was not designed to deal with security issues relating to open networks.
Even so, Pedro needs to take into account various DOS issues because client programs can
have bugs and may block in ways that might cause problems for the Pedro server.

Consequently, the Pedro server is designed to overcome various problems caused by badly
behaving clients.

Firstly, the length of any newline terminated string sent to the server has to be less than
a bound that can be set using the -8 switch at startup. The default is 1024. If the server
does not find a newline (from a given client) before it reaches the bound then that string
will be ignored.

Secondly, in Prolog, there are many ways to create infinite computation, either by
constructing infinite (cyclic) terms and then processing them or by calling other non-
terminating goals. Because Pedro uses occurs checking within unification then infinite
terms cannot be constructed. Also, the valid goals used in subscriptions cannot produce
infinite computation.

Thirdly, when a client disconnects, all its subscriptions are automatically removed.

Finally, there is the issue of blocking in the Pedro server. Because Pedro was designed
to support communicating agents then we need to guarantee that messages from a given
client will be processed in the order sent and that no messages will be dropped.

Consider a client that has subscribed but does not read notifications sent to it. Eventu-
ally, the Pedro server will not be able to send any more notifications to this client and so
will have to block on any notifications that this client should receive. This may then cause
notifying clients to block. To avoid this problem the Pedro server attaches a timeout to
clients that causes the Pedro server to block. When the timeout expires (without the client
consuming more notifications), the client is disconnected and all its subscriptions removed.
The timeout is currently set to 1 second.

Consequently, when writing a client program, it would be best to consume notifications
as soon as they arrive.

This timeout is also used when a client is trying to connect. If the handshake is not
completed within this time, the client will be disconnected.

Note that, although dealing with open networks was not a design concern for Pedro, we
believe the above defenses against DOS would allow Pedro to work in such environments.

Chapter 11: Library 16

11 Library

The Pedro C-library provides support for writing Pedro clients. It is built on top of the
glib library.

Client is an opaque datatype used to store information about a Pedro client. The
intention is to use g_main_loop_run with the callback declared in the creation of the client
called each time data is sent to the client from the Pedro server. The program consumer.c
in the examples directory is a simple example using this approach.

The following functions define the client interface.

Client* client_new(void (*cb) (char*, gpointer, gpointer), gpointer

user_data);
This function returns a pointer to a new client object connected to the Pedro
server on this machine using the default port (4550). The callback cb (user
defined) takes the data from the server, the rock specified in the matching
subscription and a pointer to user data and is called each time data arrives
from the server. The last argument, user_data, is a pointer to the user data
used as the third agument to the callback.

Client* client_new_full(int port, char* hostname, void (*cb) (char*, gpointer,
gpointer), gpointer user_data);
This function is the same as the previous one except the port and machine
name of the Pedro server are also supplied.

void client_destroy(Client* client);
Shut down the connection with the Pedro server and free the client object data.

int subscribe(Client* client, char* term, char* goal, gpointer rock);
Make a subscription for the given client and return the ID of the subscription
(0 if the subscription is unsuccessful).

gboolean unsubscribe(Client* client, guint id);
Remove the subscription with the supplied ID. It returns true iff the operation
was successful.

gboolean notify(Client* client, char* term);
Send a notification to the server. It returns true iff the operation was successful.

gboolean register_name(Client* client, char* name);
Register the supplied name with the server. It returns true iff the operation
was successful.

gboolean deregister_name(Client* client) ;
Deregister the current name with the server. It returns true iff the operation
was successful.

gboolean p2p(Client* client, char* toaddr, char* msg);
Send a peer-to-peer message to the supplied address. It returns true iff the
operation was successful.

Chapter 12: APIs 17

12 APIs

The directories src/c_api, src/python_api and src/java_api contain APIs for C, Python
and Java.

12.1 C API

The directory src/c_api contains a C-level API for Pedro clients (not using glib) in the
files c_api.c, c_api.h, pedro_token.c and pedro_token.h.

The directory also contains four example programs in two pairs. The program
producer.c sends notifications entered by the user. The program consumer.c subscribes
based on information entered by the user and displays received notifications.

The programs ping.c and pong.c respectively registers the names ping and pong. The
program ping.c repeatedly asks for a term from the user, sends it as a peer-to-peer message
to pong and waits for a reply message and displays it. The program pong. c repeatedly waits
for a peer-to-peer message, and replies with the same message wrapped in a structured term
whose functor is echo.

The file c_api.h contains comments describing the APLsrsrc

12.2 Python API

The directory src/python_api contains a definition for a Pedro client class in the file
pedroclient.py. This directory also contains a program pedro_gui.py that uses this API
and provides an interface to subscriptions and notifications.

Below is a simple example using this class withing the python interpreter.

>>> from pedroclient import *
>>> me = PedroClient()

>>> me.subscribe (’£(X)?)

1

>>> me.notify(’f(a)’)

1

>>> me.get_notification()
(£, 0)

>>> me.notify (’f(g(12, "hi"))’)
1

>>> print me.get_term() [0]
£(g(12, "hi™))

>>>

PedroClient (machine=’localhost’, port=4550, async = True)
Create a Pedro client object connected to the Pedro server on hostname using
the port port. If async is true a thread is created to process Pedro messages.
If not, a call to notification_ready will process any Pedro messages. If the
main program has its own event loop (e.g. in pygame) then the program runs
faster setting async to False and adding notification_ready to the loop.

disconnect ()
A method that disconnects the client.

Chapter 12: APIs 18

connect ()
A method that (re)connects the client.

notify(term)
A method that sends term as a notification to the Pedro server.

subscribe(term, goal = *true’, rock = 0)
A method that subscribes with the supplied term, goal and rock. This method,
if successful, returns the ID of the subscription.

unsubscribe (ID)
A method that unsubscribes to the subscription with the given ID.

register (name)
A method that registers the supplied name with the Pedro server.

deregister()
A method that deregisters its name.

p2p(toaddr, term)
A method that sends term to the address toaddr using the peer-to-peer support.
The machine part of the address can be elided if it is to a process on the same
machine. Do not use localhost as the name of the machine.

get_notification()
A method that returns the next notification received by the client as a pair
consiting of the notification string together with the rock supplied in the corre-
sponding subscription. This method blocks until a message is available if async
== True and returns None if async == false .

get_term()
This has the same behaviour as get_notification except that the notification
is parsed into a Prolog term.

parse_string(string)
Parse string into a Prolog term.

notification_ready()
A method that tests if a notification is ready to get.

PedroParser ()
Create a Prolog parser object. The only method, parse(string), parses
string to a Prolog term. If a parse error occurs, a ParserError exception
is thrown that contains the position of the error.

12.3 Java API

The directory src/java_api contains a definition for a Pedro client class and support for
Prolog terms (including a Prolog parser).

The file Client . java contains a very simple program that connects to the Pedro server,
makes a subscription based on the runtime arguments, and enters a loop that parses the
received notification into Prolog terms then pretty prints them.

Chapter 12: APIs 19

The Pedro client object creation and methods are the same as in the Python case from
the previous section except there is no get_term method. This is replaced by the use of a
parser that converts strings (from a call to get_notification()) to a Prolog term.

The files PedroEvent. java and PedroListener.java provide support for data events
from the Pedro server. Clients can add listeners to data events using the addPedrolListener
method. The file PedroGUI. java is similar to pedro_gui.py and contains an example of
using this method.

Appendix A: Copying This Manual 20

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: Copying This Manual 21

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: Copying This Manual 22

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: Copying This Manual 23

O

N.

0.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: Copying This Manual 24

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying This Manual 25

7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 26

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) 2006-2011

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Pedro Index

Pedro Index

S EL 8
\
NEL 9

abs(EL) ..o 9
acos(EL) ... 9
asin(El)o 9
atan(El)o 9
Atom syntax i 3
atom(T) ... 8

C

ceiling(E1) 9
Client* client_new(void (*cb) (charx,
gpointer, gpointer), gpointer user_data);

.. 16
Client* client_new_full(int port, charx*

hostname, void (*cb) (char*, gpointer,

gpointer), gpointer user_data); 16
Compound term syntax 4
connect () ...t 18
CoS(EL) oo 9
D
deregister() il 18
disconnect() 17
E
1= 8
El *x E2 .. e 8
El xx E2 ... 9
El+E2 .. e 8
El - B2 . 8
El /B2 8
El // B2 8
El /\E2 . 9
El <K E2 .. 9
El >> B2 . 9
EL N/ B2 9
ElmodE2 9
ElremE2 9

27
£loor(EL) oo 9
G
Gl , G2 ... 8
G1->G2 ; G3.... ... 8
Gl ; G2 .. 8
gboolean deregister_name(Client* client);
.. 16
gboolean notify(Client* client, char* term);
.. 16
gboolean p2p(Client* client, char* toaddr,
char* msg);oooviiinnnnena .. 16
gboolean register_name(Client* client, charx*
NAME) § ot ot te et 16
gboolean unsubscribe(Client* client, guint
e) 16
get_notification()................... 18
get_term() 18
I
int subscribe(Client* client, char* term,
char* goal, gpointer rock); 16
L
List syntax........... i 4
1ist(T) oo 8
Tog(EL) oo 9
M
member (X, L) ...t 8
N
not(G) ... 8
notification_ready()....................... 18
notify(term) 18
Number syntaxoouuniiiine. . 3
number (T) 8
O
onCe(G) .ot 8
Operator syntax 4
P
p2p(toaddr, term) 18
parse_string(string) 18
PedroClient (machine=’localhost’, port=4550,
async =True)iiiun... 17

Pedro Index

register(name)
round(E1)

S

SIn(EL) ..o
Split (L1, L2, L3) .ottt
splitstring(S1, S2, S3)
sart(EL) ..o
String syntax................ .. L.
string(T) ...
subscribe (term, goal = >true’, rock =0) ...

Syntax, atoms
Syntax, compound terms
Syntax, lists. ... i
Syntax, numbers............
Syntax, operators...............oiiiiiiii..

28
Syntax, Stringsoeiiiiiiii.. 3
Syntax, variables 3
0 7
Tl = T2 e 7
Tl =< T2 7
0 T 7
Tl >= T2 . 7
Tl is T2 .o 7
tan(EL) ..o 9
B 7
unsubscribe(ID) ..., 18
Variable syntax............. 3
void client_destroy(Client* client); 16

	Introduction
	Running Pedro
	Syntax
	Numbers
	Atoms
	Strings
	Variables
	Compound Terms
	Lists
	Operators

	Notifications
	Subscriptions
	Removing Subscriptions
	Registrations
	Removing Registrations
	Connecting to Pedro
	Denial of Service
	Library
	APIs
	C API
	Python API
	Java API

	Copying This Manual
	GNU Free Documentation License

	Pedro Index

