3DLDF User and Reference Manual

3-dimensional drawing with MetaPost output.
Manual edition 1.1.5.1 for 3DLDF Version 1.1.5.1
January 2004

Laurence D. Finston

This is the 3DLDF User and Reference Manual, edition 1.1.5.1 for SDLDF 1.1.5.1. This
manual was last updated on 16 January 2004. 3DLDF is a GNU package for three-
dimensional drawing with MetaPost output. The author is Laurence D. Finston.

Copyright (©) 2003, 2004 Laurence D. Finston.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Short Contents

© 00 J O Ot = W N

W W W W W W N NN DNDDNDDNDDNDDNDNIDNFE = = = = = = = =
U W NN = O © 00~ O Ui W N = O © 0 N O Ui W NN = O

Introduction e « o v o o v v v e et v v s eesossoessnsoesoasnes 1
001 1= 10
Transforming Points « . oo v v ev e e ven e it 13
Transforms . v oo oo v e e oo veveeooeessoesssoeossons 19
Drawing and Labeling Pointscoovoo... 24
Paths v oo v ittt ittt ii st neseesssoensnnns 28
Plane Figures . o v o o v vt vt v i i i ittt eennnnnnns 36
Solid Figures v v o v oo v et it i ii e iiieeenneennns 47
Pictures . v v v e v v e o vttt e st enoeeeeesesoesoesneas 54
InterSectionS e v v v v v v v e e s veoeesessessoesonsonss 73
Installing and Running 3DLDF 74
Typedefs and Utility Structures. « v o v e v v v v v veeeeeenn. 81
Global Constants and Variables. . o v v v v v v v v e v v v v e nsnn 82
Dynamic Allocation of Shapes. .. .oveveveeeeeeen.. 84
System Information « « oo v v v v e v ittt i i, 85
Color Reference. o v v v v v oo e e vvveseeeessoeossonas 88
Input and Output « o o o v v vttt e e e it i e e ennnns 92
Shape Reference oo oo i v i i i i it iiiennn. 93
Transform Reference « .« v v v v v v v v et eeeeneeeenns 96
Label Reference. . v v v v v v v v vt oot st eeeeeessnnns 108
Picture Reference « ... v v e e eeeneeeeneeeeenns 111
Point Reference . « v v v v v v v v it ittt it i ineeenneenas 119
Focus Reference. « o v v v v v v v v v e v eeveoeeeesoeonsns 151
Line Reference « . oo v v v v i i i e ie et eneeeeeneoennns 154
Plane Reference. . « v v v e v v v v e v e v v e enneeesononns 157
Path Reference o v v v v v v v vt ii it ittt enennnss 165
Polygon Reference « v v v v v v v e i i i i i iiiiii i 199
Regular Polygon Reference « ..o v v v v v viiiinn... 205
Rectangle Referenceo v iiien... 211
Regular Closed Plane Curve Reference 216
Ellipse Reference « o v v v v v v v v v i it i i i eeennnnss 222
Circle Reference oo v v v v v et v enesveeesoennsnnns 238
Pattern Reference « .o v v v v v v v v i i ittt e e eneennnss 242
Solid Reference « v v v v o v v v v e s s vveesoesesoeoesns 248
Faced Solid Reference. . o v v v v v v v v v v eeeeeeeeeneees 257

36 Cuboid Reference + v v o v v v v v e v veeeeeeeeesoeonsns 258
37 Polyhedron Reference.ovvviennieeennn. 260
38 Utility Functions . « v v v o oo v v v it e i i e 271
39 AddingaFile c oo vvee i eeenns 273
40 Future Plans v i i ittt teeeeesoeoeenenns 275
4] ChangeS . oo v e ve oot eoeonosoeeeeosssssssnnnnas 278
Bibliography « ¢ o o o oo v v ettt ittt it e e 280
A GNU Free Documentation License « « o o v o v v v v oo voeess 282
Data Type and Variable Index . « v v o v o e v v v v i i e e, 289
Function Index « v v v v v vt v e e e s v e eoesseoessonsns 292

Concept Index o o v oo v s ittt i iiie ettt ieeeenennnns 295

il

Table of Contents

1

Introduction................... 1
1.1 Sources of Information..................... 1
1.2 About This Manual 2

1.2.1 Conventions.ouiiiiiiineeinna.. 3
1.2.2 Hlustrationsc.oooveiiiinniinne... 4
1.3 CWEB Documentationooviiineai.... 5
1.4 Metafont and MetaPost. 6
1.5 Caveats .. .ovo 7
1.5.1 ACCUTACY -« oo e ettt et e e e 7
1.5.2 NoInput Routine.............. 8
1.6 Ports. ..o 8
1.7 Contributing to 3DLDF 9

Points.............coiiiiiiiiiiiiiina... 10
2.1 Declaring and Initializing Points......................... 10
2.2 Setting and Assigning to Points 11

Transforming Points 13
31 Shiftingooori 13
3.2 Scaling ... 14
3.3 Shearing........ ..o 14
34 Rotating........ ..o 17

Transforms.................coiiiiiin... 19
4.1 Applying Transforms to Points 20
4.2 Inverting Transforms, 21

Drawing and Labeling Points.............. 24
5.1 Drawing Points 24
5.2 Labeling Points 26

Paths............. ... i, 28
6.1 Declaring and Initializing Paths 28
6.2 Drawing and Filling Paths........................... ... 30

Plane Figuresou.... 36
7.1 Regular Polygons i 36
7.2 Rectangles. 39
7.3 EIPSES. ..ot 43

T4 CIrCles . ..o 45

10

11

12

13

14

15

16

Solid Figures, 47
8.1 Cuboids..... ... 47
8.2 Polyhedron 48

8.2.1 Tetrahedron............. 48
8.2.2 Dodecahedron............ 49
8.2.3 Icosahedron 51

Pictures..............o ... 54

9.1 Projectionsc.o i 58
9.1.1 Parallel Projections............................ 58

9.1.2 The Perspective Projection..................... 60

9.2 FOCUSES. . vttt 63
9.3 Surface Hiding 66
Intersectionsvvin... 73
Installing and Running 3DLDF........... 74
11.1 Imstalling 3DLDF 74
11.1.1 Template Functions........................... 74

11.2 Running 3DLDF 75
11.2.1 Converting EPS Files 7

11.2.1.1 Emacs-Lisp Functions 78

11.2.2 Command Line Arguments.................... 79
Typedefs and Utility Structures 81
Global Constants and Variables........... 82
Dynamic Allocation of Shapes............ 84
System Information...................... 85
15.1 Endiannessooiiiiii 85
15.2 Register Width 86
15.3 Get Second Largest Real............................... 86
Color Reference 88
16.1 Data Members......... ... 88
16.2 Constructors and Setting Functions..................... 88
16.3 Operatorscovuin et 89
16.4 Modifyingo 89
16.5 Showingoooii 90
16.6 QUETYING . ..ottt 90
16.7 Defining and Initializing Colors......................... 90

16.8 Namespace Colors. ...t 90

v

17 Input and Output 92

17.1 Global Variables 92
17.2 I/O Functions i 92
18 Shape Reference......................... 93
18.1 Data Members............... .. 93
18.2 OPeratorst 93
18.3 COPYING .« v vttt et 93
184 Modifying 93
18.5 Affine Transformationsc.oo. ... 94
18.6 Applying Transformations 94
18.7 Clearingoouiie 94
188 QUEIYING .. oottt 94
18.9 ShowWingooiiiii 94
18.10 Outputting ... 94
19 Transform Reference..................... 96
19.1 Data Members.............c.iiiii .. 96
19.2 Global Variables and Constants 96
19.3 ConstructorS.ottt 96
19.4 Operatorsouiue it 96
19.5 Matrix Inversion 99
19.6 Setting Values ... 99
197 QUETYING . . oot vt 99
19.8 Returning Information................................ 100
19.9 Showingcoiiii 100
19.10 Affine Transformations 101
19.11 Alignment with an Axis 105
19.12 Resetting....... ..o 107
19.13 Cleaning 107
20 Label Reference 108
20.1 Data Members............... i 108
20.2 COPYINE - oottt et 109

20.3 Outputting ... 109

21 Picture Reference 111
21.1 Data Members....... ...t 111
21.2 Global Variables 111
21.3 ConstrucCtorS.ovv i 111
214 OPeratorsottt e 112
21.5 Affine Transformations 113
21.6 Modifyingcooi 113
21.7 ShOWING . .ottt e 114
21.8 Outputtingcooiiiii 114

21.8.1 NamespacCesSvurrmieneneeaenan.. 114
21.8.1.1 Namespace Projections.............. 114
21.8.1.2 Namespace Sorting.................. 114

21.8.2 Output Functions 115

22 Point Reference 119
22.1 Data Members.oiii . 119
22.2 Typedefs and Utility Structures 121
22.3 Global Constants and Variables 122
22.4 Constructors and Setting Functions.................... 122
22.5 Destructor. 123
22.6 OPEratorscouuii i e 124
22.7 COPYING .« vttt 126
22.8 QUETYING ...\t 126
22.9 Returning Coordinates 127
22.10 Returning Information................ 129
22.11 Modifying . ..o 129
22.12 Affine Transformations 130
22.13 Applying Transformations 135
22.14 Projecting...........oiiiimii 135
22.15 Vector Operations.ccviviiiinnieinna... 135
22.16 Pointsand Lines.............c.uuiiiiiinnnn.. 140
22.17 IntersectionsS.ouuuriii i 143
2218 Drawing........oiiiii 144
22.19 Labelling........cooooii 147
2220 ShOWING . ..ot 149
2221 Outputting..........coooiin 149

23 Focus Reference 151
23.1 Data Members............oi .. 151
23.2 Global Variablesco 151
23.3 Constructors and Setting Functions.................... 152
234 OPeratorsoeoun et e 152
23.5 Modifyingcooii 152
23.6 QUETYING . ..ot 153
23.7 ShOWINGot 153

vi

24 Line Reference 154
24.1 Data Members....... 154
24.2 Global Constants 154
24.3 ConstrucCtorS.ov it e 154
244 OPEratorsottt e 155
245 Get Path 155
24.6 ShOWING . ..\ttt e 155
25 Plane Reference 157
25.1 Data Members.oii . 157
25.2 Global Constants 157
25.3 ConStruCtorS. . ..ot 157
25.4 Operatorsou et e 158
25.5 Returning Information.................... 159
25.6 IntersectionsS.c.ouiiini i 160
25.7 SHOWINE . . oottt et ettt e 163
26 Path Reference......................... 165
26.1 Data Members............oou .. 165
26.2 Constructors and Setting Functions.................... 167
26.3 Destructor...........o 171
26.4 OPEratorscouue it e 171
26.5 Appending ... 172
26.6 COPYING -« v vttt ettt 173
26.7 Clearingcouuiiiii 173
26.8 Modifyingcoouiin 173
26.9 Affine Transformations 174
26.10 Aligning with an Axis.......... 178
26.11 Applying Transformations 180
26.12 Drawing and Filling 180
26.13 Labelling......... ..o 191
26.14 ShOWING . ..ot 192
26.15 QUETYING ...\ttt 194
26.16 Outputting 196
26.17 IntersectionsS.ouuuuiii .. 197
27 Polygon Reference...................... 199
27.1 Data Members.oii 199
27.2 OPEratorsttt e 199
27.3 QUETYING . ..ot 199
27.4 Affine Transformations 199
27.5 IntersectionsSc..ouuri et 200

vii

28

29

30

31

32

33

Regular Polygon Reference.............. 205
28.1 Data Members.............iiiii 205
28.2 Constructors and Setting Functions.................... 205
28.3 Operatorsuuiii 207
284 QUETYING ..o ottt 207
28.5 CHrCles ..o 207
Rectangle Reference 211
29.1 Data Members....... ...t 211
29.2 Constructors and Setting Functions.................... 211
29.3 Operatorsc.uuiii e 212
29.4 Returning Points.......... 212
29.5 QUETYING . ..o ot 213
2.6 EIPSES. ..ttt 213

Regular Closed Plane Curve Reference... 216

30.1 Data Members..........co.oiii 216
30.2 QUETYING ..ottt e 216
30.3 Intersections.ei i 217
30.4 Segmentsiiii 219
Ellipse Reference 222
31.1 Data Members.co.uiii 222
31.2 Constructors and Setting Functions.................... 222
31.3 Performing Transformations........................... 224
314 Operatorsuee i 224
31.5 Labeling........ .o 224
31.6 Affine Transformationscooiiieoo... 226
317 QUETYING ..ottt 226
31.8 Returning Elements and Information 227
31.9 Intersections. 230
3110 SOIVING . . oo et 235
31.11 Rectangles. 236
Circle Reference........................ 238
32.1 Data Members...........iii 238
32.2 Constructors and Setting Functions.................... 238
32.3 Operatorsuee 238
324 QUETYING . oottt 239
32.5 IntersectionS.............c.uiiii . 240
Pattern Reference 242
33.1 Plane Tesselations. 242
33.2 Roulettes and Involutes. 244

33.2.1 Epicycloids. 245

viii

34 Solid Reference..........ccovvieiei.... 248

34.1 Data Members...... ... 248
34.2 Constructors and Setting Functions.................... 248
34.3 Destructor........ .. 249
344 Operatorsueei 249
345 COPYINE . . oo ettt 249
34.6 Setting Members............... oo 249
347 QUETYING . .. 250
34.8 Returning Elements and Information 250
Getting Shape Centers, 250
Getting Shapes ... 251

34.9 Showing.........oo i 253
34.10 Affine Transformations 253
34.11 Applying Transformations 254
34.12 Outputting 254
34.13 Drawing and Filling........... 255
3414 Clearing.ot 256
35 Faced Solid Reference................... 257
35.1 Data Members......... ... 257
36 Cuboid Reference 258
36.1 Data Members.......... ... i 258
36.2 Constructors and Setting Functions.................... 258
36.3 Operatorsoueir 259
37 Polyhedron Reference................... 260
37.1 Data Members......... ... 260
37.2 Regular Platonic Polyhedra........................... 260
37.2.1 Tetrahedron.............. 260
37.2.1.1 Data Members...................... 260

37.2.1.2 Constructors and Setting Functions .. 260

37213 Net.ooooii 262

37.2.2 Dodecahedron................. 264
37.2.2.1 Data Members...................... 264

37.2.2.2 Constructors and Setting Functions .. 264

37223 Net..oooii 265

37.2.3 Icosahedron............... 266
37.2.3.1 Data Members...................... 266

37.2.3.2 Constructors and Setting Functions .. 266

37233 Net.ooooooi 267

37.3 Semi-Regular Archimedean Polyhedra 269
37.3.1 Truncated Octahedron....................... 269
37.3.1.1 Data Members...................... 269

37.3.1.2 Constructors and Setting Functions .. 269
37313 Net......ooooi .. 270

38 Utility Functions 271

38.1 Perspective Functions 271
39 AddingaPFile.......................... 273
40 FuturePlans........................... 275
40.1 GEOMEtTY oottt et 275
40.2 Curves and Surfaces...................iiiiii... 275
40.3 Shadows, Reflections, and Rendering 276
40.4 Multi-Threading 277
41 Changesccviiiiiiiinnnnnnennnss 278
41.1 3DLDF 1.1.5.1 . .. 278
41.2 3DLDF 1.1.5. .. 278
41.3 3DLDF 1.1.4.2. .. o 279
41.4 3DLDF 1.1.4.1 e 279
41.5 3DLDF 1.1.4. 279
41.6 3DLDF 1.1.1. ... 279
Bibliography.............. ... o oo, 280

Appendix A GNU Free Documentation License
....................................... 282

A.0.1 ADDENDUM: How to use this License for your

documentscoiiiiii 288
Data Type and Variable Index............... 289
FunctionIndexcvvv... 292

Concept Indexcoiiiiiiinna.. 295

Chapter 1: Introduction 1

1 Introduction

3DLDF is a free software package for three-dimensional drawing written by Laurence D.
Finston, who is also the author of this manual. It is written in C++ using CWEB and it
outputs MetaPost code.

3DLDF is a GNU package. It is part of the GNU Project of the Free Soft-
ware Foundation and is published under the GNU General Public License. See
the website http://www.gnu.org for more information. 3DLDF is available for
downloading from http://ftp.gnu.org/gnu/3dldf. The official 3DLDF website is
http://www.gnu.org/software/3d1ldf. More information about 3DLDF can be found at
the author’s website: http://wuwuser.gwdg.de/ 1finstol.

Please send bug reports to:
bug-3DLDF@gnu.org and

Two other mailing lists may be of interest to users of SDLDF: help-3DLDF@gnu. org is for
people to ask other users for help and info-3DLDF@gnu.org is for sending announcements
to users. To subscribe, send an email to the appropriate mailing list or lists with the word
"subscribe" as the subject. The author’s website is http://wwwuser.gwdg.de/ 1finstol.

My primary purpose in writing 3DLDF was to make it possible to use MetaPost for
three-dimensional drawing. I've always enjoyed using MetaPost, and thought it was a
shame that I could only use it for making two-dimensional drawings. 3DLDF is a front-
end that operates on three-dimensional data, performs the necessary calculations for the
projection onto two dimensions, and writes its output in the form of MetaPost code.

While 3DLDF’s data types and operations are modelled on those of Metafont and Meta-
Post, and while the only form of output 3DLDF currently produces is MetaPost code, it is
nonetheless not in principle tied to MetaPost. It could be modified to produce PostScript
code directly, or output in other formats. It would also be possible to modify 3DLDF so
that it could be used for creating graphics interactively on a terminal, by means of an
appropriate interface to the computer’s graphics hardware.

The name “3DLDF” (“3D” plus the author’s initials) was chosen because, while not
pretty, it’s unlikely to conflict with any of the other programs called “3D”-something.

1.1 Sources of Information

This handbook, and the use of 3DLDF itself, presuppose at least some familiarity on the
part of the reader with Metafont, MetaPost, CWEB, and C++. If you are not familiar with
any or all of them, I recommend the following sources of information:

Knuth, Donald Ervin. The METAFONTbook. Computers and Typesetting; C. Addison
Wesley Publishing Company, Inc. Reading, Massachusetts 1986.

Hobby, John D. A User’s Manual for MetaPost. AT & T Bell Laboratories. Murray Hill,
NJ. No date.

Knuth, Donald E. and Silvio Levy. The CWEB System of Structured Documentation.
Version 3.64—February 2002.

Chapter 1: Introduction 2

Stroustrup, Bjarne. The C++ Programming Language. Special Edition. Reading, Mas-
sachusetts 2000. Addison-Wesley. ISBN 0-201-70073-5.

The manuals for MetaPost and CWEB are available from the Comprehensive TEX
Archive Network (CTAN). See one of the following web sites for more information:

Germany http://dante.ctan.org, http://ftp.dante.de
http://www.dante.de.

United Kingdom
http://www.cam.ctan.org
http://ftp.tex.ac.uk.

USA http://www.tug.ctan.org
http://www.ctan.tug.org.

1.2 About This Manual

This manual has been created using Texinfo, a documentation system which is part of the
GNU Project, whose main sponsor is the Free Software Foundation. Texinfo can be used
to generate online and printed documentation from the same input files.

For more information about Texinfo, see:

Stallmann, Richard M. and Robert J. Chassell. Tezinfo. The GNU Documentation Format.
The Free Software Foundation. Boston 1999.

For more information about the GNU Project and the Free Software Foundation, see
the following web site: http://www.gnu.org.

The edition of this manual is 1.1.5.1 and it documents version 1.1.5.1 of 3DLDF. The
edition number of the manual and the version number of the program are the same (as of
16 January 2004), but may diverge at a later date.

Note that “I”, “me”, etc., in this manual refers to Laurence D. Finston, so far the sole
author of both 3DLDF and this manual. “Currently” and similar formulations refer to
version 1.1.5.1 of 3DLDF as of 16 January 2004.

This manual is intended for both beginning and advanced users of 3DLDF. So, if there’s
something you don’t understand, it’s probably best to skip it and come back to it later.
Some of the more difficult points, or ones that presuppose familiarity with features not yet
described, are in the footnotes.

I firmly believe that an adequate program with good documentation is more useful
than a great program with poor or no documentation. The ideal case, of course, is a
great program with great documentation. I'm sorry to say, that this manual is not
yet as good as I'd like it to be. I apologize for the number of typos and other errors.
I hope they don’t detract too much from its usefulness. I would have liked to have
proofread and corrected it again before publication, but for reasons external to 3DLDF,
it is necessary for me to publish now. I plan to set up an errata list on the official
3DLDF website (http://www.gnu.org/software/3d1ldf), and/or my own website
(http://wwwuser.gwdg.de/ 1finstol).

Chapter 1: Introduction 3

Unless I've left anything out by mistake, this manual documents all of the data types,
constants and variables, namespaces, and functions defined in 3SDLDF. However, some of the
descriptions are terser than I would like, and I’d like to have more examples and illustrations.
There is also more to be said on a number of topics touched on in this manual, and some
topics I haven’t touched on at all. In general, while I've tried to give complete information
on the “what and how”, the “why and wherefore” has sometimes gotten short shrift. I hope
to correct these defects in future editions.

1.2.1 Conventions

Data types are formatted like this: int, Point, Path. Plurals are formatted in the same
way: ints, Points, Paths. It is poor typographical practice to typeset a single word using
more than one font, e.g., ints, Points, Paths. This applies to data types whose plurals do

738}

not end in “s” as well, e.g., the plural of the C++ class Polyhedron is Polyhedra.
When C+ functions are discussed in this manual, I always include a pair of parentheses
to make it clear that the item in question is a function and not a variable, but I generally
do not include the arguments. For example, if I mention the function foo (), this doesn’t
imply that foo() takes no arguments. If it were appropriate, I would include the argument
type:
foo(int)

or the argument type and a placeholder name:
foo(int arg)

or I would write
foo(void)

to indicate that foo () takes no arguments. Also, I generally don’t indicate the return type,
unless it is relevant. If it is a member function of a class, I may indicate this, e.g.,, bar_
class::foo(), or not, depending on whether this information is relevant. This convention
differs from that used in the [Function Index], page 292, which is generated automatically
by Texinfo. There, only the name of the function appears, without parentheses, parameters,
or return values. The class type of member functions may appear in the Function Index,
(e.g., bar_class: :foo), but only in index entries that have been entered explicitly by the
author; such entries are not generated by Texinfo automatically.

Examples are formatted as follows:

Point p0(1, 2, 3);
Point p1(5, 6, 7.9);
Path pa(p0, pl);
pO.show("p0:");

4 p0: (1, 2, 3)

Examples can contain the following symbols:
- Indicates output to the terminal when 3DLDF is run.

= Indicates a result of some sort. It may precede a illustration generated by the
code in the example.

Indicates that the following text is an error message.

Chapter 1: Introduction 4

This manual does not use all of the symbols provided by Texinfo. If you find a symbol
you don’t understand in this manual (which shouldn’t happen), see page 103 of the Texinfo
manual.

Symbols:

N The set of the natural numbers {0, 1,2,3,4,...}.

Z The set of the integers {...,—3,-2,—1,0,1,2,3,4,...}.
R The set of the real numbers.

1.2.2 Tllustrations

The illustrations in this manual have been created using 3DLDF. The code that generates
them is in the Texinfo files themselves, that contain the text of the manual. Texinfo is
based on TEX, so it’s possible to make use of the latter’s facility for writing ASCII text to
files using TEX’s \write command.

The file ‘3DLDF-1.1.5.1/CWEB/exampman.web’ contains the C++ code, and the file
‘3DLDF-1.1.5.1/CWEB/examples.mp’ contains the MetaPost code for generating the
illustrations. 3DLDF was built using GCC 2.95 when the illustrations were generated. For
some reason, GCC 3.3 has difficulty with them. It works to generate them in batches of
about 50 with GCC 3.3.

MetaPost outputs Encapsulated PostScript files. These can be included in TEX files,
as explained below. However, in order to display the illustrations in the HTML ver-
sion of this manual, I had to convert them to PNG (“Portable Network Graphics”) for-
mat (http://www.libpng.org/pub/png/index.html). See Section 11.2.1 [Converting EPS
Files|, page 77, for instructions on how to do this.

Please note that the illustrations cannot be shown in the Info output format!

If you have problems including the illustrations in the printed version, for example, if
your installation doesn’t have dvips, look for the following lines in ‘3DLDF.texi’:

\doepsftrue %% One of these two lines should be commented-out.
%\doepsffalse

Now, remove the ‘%’ from in front of ‘\doepsffalse’ and put one in front of ‘\doepsftrue’.
This will prevent the illustrations from being included. This should only be done as a last
resort, however, because it will make it difficult if not impossible to understand this manual.

The C++ code in an example is not always the complete code used to create the illustra-
tion that follows it, since the latter may be cluttered with commands that would detract
from the clarity of the example. The actual code used always follows the example in the
Texinfo source file, so the latter may be referred to, if the reader wishes to see exactly what
code was used to generate the illustration.

You may want to skip the following paragraphs in this section, if you're reading this
manual for the first time. Don’t worry if you don’t understand it, it’s meaning should
become clear after reading the manual and some experience with using 3DLDF.

The file ‘3DLDF.texi’ in the directory ‘3DLDF-1.1.5.1/D0OC/TEXINFO’, the driver file for
this manual, contains the following TEX code:

Chapter 1: Introduction 5

\newif\ifmakeexamples
\makeexamplestrue %% One of these two lines should be commented-out.
%\makeexamplesfalse

When texi2dvi is run on ‘3DLDF.texi’, \makeexamplestrue is not commented-
out, and \makeexamplesfalse is, the C++ code for the illustrations is written
to the file ‘examples.web’. If the EPS files don’t already exist (in the directory
‘3DLDF-1.1.5.1/DOC/TEXINFO/EPS’), the TEX macro \PEX, which includes them in the
Texinfo files, will signal an error each time it can’t find one. Just type ‘s’ at the command
line to tell TEX to keep going. If you want to be sure that these are indeed the only errors,
you can type ‘<RETURN>’ after each one instead.

texi2dvi 3DLDF.texi also generates the file ‘extext.tex’, which contains TEX code for
including the illustrations by themselves.

‘examples.web’ must now be moved to ‘3DLDF-1.1.5.1/CWEB/’ and ctangled,
‘examples.c’ must compiled, and 3DLDF must be relinked. ctangle examples also
generates the header file ‘example.h’, which is included in ‘main.web’. Therefore, if
the contents of ‘examples.h’ have changed since the last time ‘main.web’ was ctangled,
‘main.web’ will have to be ctangled, and ‘main.c’ recompiled, before ‘3d1df’ is relinked.?

Running 3d1df and MetaPost now generates the EPS (Encapsulated PostScript) files
‘3DLDFmp.1’ through (currently) ‘3DLDFmp.199’ for the illustrations. They must be moved
to ‘3DLDF-1.1.5.1/DOC/TEXINFO/EPS’. Now, when texi2dvi 3DLDF.texi is run again,
the dvips command ‘\epsffile’ includes the EPS files for the illustrations in the manual.
‘3DLDF . texi’ includes the line ‘\input epsf’, so that ‘\epsffile’ works. Of course, dvips
(or some other program that does the job) must be used to convert ‘3DLDF.dvi’ to a
PostScript file. To see exactly how this is done, take a look at the ‘.texi’ source files of
this manual.?

In the ‘3DLDF.texi’ belonging to the 3DLDF distribution, \makeexamplestrue will be
commented-out, and makeexamplesfalse won’t be, because the EPS files for the illustra-
tions are included in the distribution.

The version of ‘examples.web’ in ‘3DLDF-1.1.5.1/CWEB’ merely includes the files

‘subexl.web’ and ‘subex2.web’. If you rename ‘3DLDF-1.1.5.1/CWEB/exampman.web’ to
‘examples.web’, you can generate the illustrations.

1.3 CWEB Documentation

As mentioned above, 3DLDF has been programmed using CWEB, which is a “literate
programming” tool developed by Donald E. Knuth and Silvio Levy. See Section 1.1 [Sources
of Information], page 1, for a reference to the CWEB manual. Knuth’s TEX—The Program
and Metafont—The Program both include a section “How to read a WEB” (pp. x—=xv, in
both volumes).

! ctangle creates ‘<filename>.c’ from ‘<filename>.web’, so the compiler must compile the C++ files

using the ‘-x c++’ option. Otherwise, it would handle them as if they contained C code.

If you want to try generating the illustrations yourself, you can save a little run-time by calling tex
3DLDF.texi the first time, rather than texi2dvi. The latter program runs TEX twice, because it needs
two passes in order to generate the contents, indexing, and cross reference information (and maybe some
other things, t00).

Chapter 1: Introduction 6

CWEB files combine source code and documentation. Running ctangle on a CWEB
file, for example, ‘main.web’, produces the file ‘main.c’ containing C or C++ code. Running
cweave main.web creates a TEX file with pretty-printed source code and nicely formatted
documentation. I find that using CWEB makes it more natural to document my code
as I write it, and makes the source files easier to read when editing them. It does have
certain consequences with regard to compilation, but these are taken care of by make.
See Chapter 39 [Adding a File|, page 273, and Chapter 41 [Changes|, page 278, for more
information.

The CWEB files in the directory ‘3DLDF-1.1.5.1/CWEB/’ contain the source code for
3DLDF. The file ‘3DLDFprg.web’ in this directory is only ever used for cweaving; it is never
ctangled and contains no C++ code for compilation. It does, however, include all of the other
CWESB files, so that cweave 3DLDFprg.web generates the TEX file containing the complete
documentation of the source code of 3DLDF.

The files ‘3DLDF-1.1.5.1/CWEB/3DLDFprg. tex’, ‘3DLDF-1.1.5.1/CWEB/3DLDFprg.dvi’,|]
and ‘3DLDF-1.1.5.1/CWEB/3DLDFprg.ps’ are included in the distribution of 3DLDF as
a convenience. However, users may generate them themselves, should there be some
reason for doing so, by entering make ps from the command line of a shell from the
working directory ‘3DLDF-1.1.5.1/’ or ‘3DLDF-1.1.5.1/CWEB’. Alternatively, the user
may generate them by hand from the working directory ‘3DLDF-1.1.5.1/CWEB/’ in the
following way:

1. cweave 3DLDFprg.web generates ‘3DLDFprg.tex’.
2. tex 3DLDFprg or tex 3DLDFprg.tex generates ‘3DLDFprg.dvi’.

3. dvips -o 3DLDFprg.ps 3DLDFprg (possibly with additional options) generates
‘3DLDFprg.ps’.

4. 1pr -P<print queue> 3DLDFprg.ps sends ‘3DLDFprg.ps’ to a printer, on a UNIX or
UNIX-like system.

The individual commands may differ, depending on the system you’re using.

1.4 Metafont and MetaPost

Metafont is a system created by Donald E. Knuth for generating fonts, in particular for
use with TEX, his well-known typsetting system.?® Expressed in a somewhat simplified way,
Metafont is a system for programming curves, which are then digitized and output in the
form of run-time encoded bitmaps. (See Knuth’s The Metafontbook for more information).

John D. Hobby modified Metafont’s source code to create MetaPost, which functions in
much the same way, but outputs encapsulated PostScript (EPS) files instead of bitmaps.
MetaPost is very useful for creating graphics and is a convenient interface to PostScript. It
is also easy both to imbed TEX code in MetaPost programs, for instance, for typesetting
labels, and to include MetaPost graphics in ordinary TEX files, e.g., by using dvips.* Apart
from simply printing the PostScript file output by dvips, there are many programs that

3 Knuth, Donald E. The Tj EXbook. Computers and Typesetting; A. Addison-Wesley Publishing Company.
Reading, Massachusetts 1986.

4 Rokicki, Tomas. Duvips: A DVI-to-PostScript Translator February 1997. Available from CTAN. See
Section 1.1 [Sources of Information], page 1.

Chapter 1: Introduction 7

can process ordinary or encapsulated PostScript files and convert them to other formats.
Just two of the many possibilities are ImageMagick and GIMP, both of which can be used
to create animations from MetaPost graphics.

However, MetaPost inherited a significant limitation from Metafont: it’s not possible to
use it for making three-dimensional graphics, except in a very limited way. One insuperable
problem is the severe limitation on the magnitude of user-defined numerical variables in
Metafont and MetaPost.® This made sense for Metafont’s and MetaPost’s original purposes,
but they make it impossible to perform the calculations needed for 3D graphics.

Another problem is the data types defined in Metafont: Points are represented as pairs
of real values and affine transformations as sets of 6 real values. This corresponds to the
representation of points and affine transformations in the plane as a two-element vector on
the one hand and a six element matrix on the other. While it is possible to work around the
limitation imposed by having points be represented by only two values, it is impracticable
in the case of the transformations.

For these reasons, I decided to write a program that would behave more or less like
Metafont, but with suitable extensions, and the ability to handle three dimensional data;
namely 3DLDF. It stores the data and performs the transformations and other necessary
calculations and is not subject to the limitations of MetaPost and its data types. Upon
output, it performs a perspective transformation, converting the 3D image into a 2D one.
The latter can now be expressed as an ordinary MetaPost program, so 3DLDF writes its
output as MetaPost code to a file.

In the following, it may be a little unclear why I sometimes refer to Metafont and
sometimes to MetaPost. The reason is that Metafont inherited much of its functionality
from Metafont. Certain operations in Metafont have no meaning in MetaPost and so have
been removed, while MetaPost’s function of interfacing with PostScript has caused other
operations to be added. For example, in MetaPost, color is a data type, but not in
Metafont. Unless otherwise stated, when I refer to Metafont, it can be assumed that what
I say applies to MetaPost as well. However, when I refer to MetaPost, it will generally be
in connection with features specific to MetaPost.

1.5 Caveats

1.5.1 Accuracy

When 3DLDF is run, it uses the three-dimensional data contained in the user code to create
a two-dimensional projection. Currently, this can be a perspective projection, or a parallel
projection onto one of the major planes. MetaPost code representing this projection is then
written to the output file. 3DLDF does no scan conversion,® so all of the curves in the

5 «..] METAFONT deals only with numbers in a limited range: A numeric token must be less than 4096,
and its value is always rounded to the nearest multiple of ﬁ.” Knuth, The METAFON Tbhook, p. 50.

6 Scan conversion is the process of digitizing geometric data. The ultimate result is a 2 x 2 map of pixels,
which can be used for printing or representing the projection on a computer screen. The number of
pixels per a given unit of measurement is the resolution of a given output device, e.g., 300 pixels per
inch.

Chapter 1: Introduction 8

projection are generated by means of the algorithms MetaPost inherited from Metafont.
These algorithms, however, are designed to find the “most pleasing curve”” given one or
more two-dimensional points and connectors; they do not account for the the fact that
the two-dimensional points are projections of three-dimensional ones. This can lead to
unsatisfactory results, especially where extreme foreshortening occurs. In particular, ‘curl’,
dir, ‘tension’, and control points should be used cautiously, or avoided altogether, when
specifying connectors.

3DLDF operates on the assumption that, given an adequate number of points, MetaPost
will produce an adequate approximation to the desired curve in perspective, since the greater
the number of points given for a curve, the less “choice” MetaPost has for the path through
them. My experience with 3SDLDF bears this out. Generally, the curves look quite good.
Where problems arise, it usually helps to increase the number of points in a curve.

A more serious problem is the imprecision resulting from the operation of rotation.
Rotations use the trigonometric functions, which return approximate values. This has the
result that points that should have identical coordinate values, sometimes do not. This
has consequences for the functions that compare points. The more rotations are applied to
points, the greater the divergence between their actual coordinate values, and the values
they should have. So far, I haven’t found a solution for this problem. On the other hand,
it hasn’t yet affected the usability of 3DLDF.

1.5.2 No Input Routine

3DLDF does not yet include a routine for reading input files. This means that user code
must be written in C++, compiled, and linked with the rest of the program. I admit, this
is not ideal, and writing an input routine for user code is one of the next things I plan to
add to 3DLDF.

I plan to use Flex and Bison to write the input routine.® The syntax of the input code
should be as close as possible to that of MetaPost, while taking account of the differences
between MetaPost and 3DLDF.

For the present, however, the use of 3DLDF is limited to those who feel comfortable
using C+ and compiling and relinking programs. Please don’t be put off by this! It’s
not so difficult, and make does most of the work of recompiling and running 3DLDF. See
Chapter 11 [Installing and Running 3DLDF], page 74, for more information.

1.6 Ports

I originally developed 3DLDF on a DECalpha Personal Workstation with two processors
running under the operating system Tru64 Unix 5.1, using the DEC C++ compiler. I then
ported it to a PC Pentium 4 running under Linux 2.4, using the GNU C++ compiler GCC
2.95.3, and a PC Pentium II XEON under Linux 2.4, using GCC 3.3. I am currently only
maintaining the last version. I do not believe that it’s worthwhile to maintain a version for
GCC 2.95. While I would like 3DLDF to run on as many platforms as possible, I would

" Knuth, The METAFONTbook, Chapter 14, p. 127.

8 Flex is a program for generating text scanners and Bison is a parser generator. They are available from
http://www.gnu.org.

Chapter 1: Introduction 9

rather spend my time developing it than porting it. This is something where I would be
grateful for help from other programmers.

Although I am no longer supporting ports to other systems, I have left some conditionally
compiled code for managing platform dependencies in the CWEB sources of 3DLDF. This
may make it easier for other people who want to port 3DLDF to other platforms.

Currently, the files ‘io.web’, ‘loader.web’, ‘main.web’, ‘points.web’, and ‘pspglb.web’
contain conditionally compiled code, depending on which compiler, or in the case of GCC,
which version of the compiler, is used. The DEC C++ compiler defines the preprocessor
macro ‘__DECCXX’ and GCC defines ‘'__GNUC__’. In order to distinguish between GCC 2.95.3
and GCC 3.3, I've added the macros ‘LDF_GCC_2_95" and ‘LDF_GCC_3_3’ in ‘loader.web’,
which should be defined or undefined, depending on which compiler you’re using. In the
distribution, ‘LDF_GCC_3_3’ is defined and ‘LDF_GCC_2_95’ is undefined, so if you want to
try using GCC 2.95, you’ll have to change this (it’s not guaranteed to work).

3DLDF 1.1.5.1 now uses Autoconf and Automake, and the ‘configure’ script generates
a ‘config.h’ file, which is now included in ‘loader.web’. Some of the preprocessor macros
defined in ‘config.h’ are used to conditionally include library header files, but so far, there
is no error handling code for the case that a file can’t be included. I hope to improve the
way 3DLDF works together with Autoconf and Automake in the near future.

3DLDF 1.1.5 is the first release that contains template functions. Template instantiation
differs from compiler to compiler, so using template functions will tend to make 3DLDF
less portable. See Section 11.1.1 [Template Functions|, page 74, for more information. I
am no longer able to build 3SDLDF on the DECalpha Personal Workstation. I'm fairly sure
that it would be possible to port it, but I don’t plan to do this, since Tru64 Unix 5.1 and
the DEC C++ compiler are non-free software.

1.7 Contributing to 3aDLDF

So far, I've been the sole author and user of 3DLDF. I would be very interested in having
other programmers contribute to it. I would be particularly interested in help in making
3DLDF conform as closely as possible to the GNU Coding Standards. I would be grateful if
someone would write proper Automake and Autoconf files, since I haven’t yet learned how
to do so (I'm working on it).

See Chapter 1 [Introduction], page 1, for information on how to contact the author.

Using 3DLDF

Since 3DLDF does not yet have an input routine, user code must be written in C++ (in
‘main.web’, or some other file) and compiled. Then, 3DLDF must be relinked, together
with the new file of object code resulting from the compilation. For now, the important
point is that the text of the examples in this manual represent C++ code. See Chapter 11
[Installing and Running 3DLDF], page 74, for more information.

Chapter 2: Points 10

2 Points

2.1 Declaring and Initializing Points

The most basic drawable object in 3DLDF is class Point. It is analogous to pair in
Metafont. For example, in Metafont one can define a pair using the “z” syntax as follows:

z0 = (1cm, 1cm);
There are other ways of defining pairs in Metafont (and MetaPost), but this is the usual
way.

In 3DLDF, a Point is declared and initialized as follows:

Point pt0(1, 2, 3);

This simple example demonstrates several differences between Metafont and 3DLDF.
First of all, there is no analog in 3DLDF to Metafont’s “z” syntax. If I want to have Points
called “pt0”, “pt1”, “pt2”, etc., then I must declare each of them to be a Point:

Point pt0(10, 15, 2);

Point pt1(13, 41, 5.5);

Point pt2(62.9, 7.02, 8);

Alternatively, I could declare an array of Points:

Point pt[3];
Now I can refer to pt [0], pt[1], and pt[2].
In the Metafont example, the x and y-coordinates of the pair z0 are specified using the unit
of measurement, in this case, centimeters. This is currently not possible in 3SDLDF. The
current unit of measurement is stored in the static variable Point: :measurement_units,
which is a string. Its default value is "cm" for “centimeters”. At present, it is best to stick
with one unit of measurement for a drawing. After I’ve defined an input routine, 3DLDF
should handle units of measurement in the same way that Metafont does.

Another difference is that the Points ptO, ptl, and pt2 have three coordinates, x, y,
and z, whereas z0 has only two, x and y. Actually, the difference goes deeper than this. In
Metafont, a pair has two parts, xpart and ypart, which can be examined by the user. In
3DLDF, a Point contains the following sets of coordinates:

world_coordinates
user_coordinates
view_coordinates
projective_coordinates

These are sets of 3-dimensional homogeneous coordinates, which means that they contain
four coordinates: x, y, z, and w. Homogeneous coordinates are used in the affine and
perspective transformations (see Chapter 4 [Transforms|, page 19).

Currently, only world_coordinates and projective_coordinates are used in 3DLDF.
The world_coordinates refer to the position of a Point in 3DLDF’s basic, unchanging co-
ordinate system. The projective_coordinates are the coordinates of the two-dimensional
projection of the Point onto a plane. This projection is what is ultimately printed out or
displayed on the computer screen. Please note, that when the coordinates of a Point are
referred to in this manual, the world_coordinates are meant, unless otherwise stated.

Chapter 2: Points 11

Points can be declared and their values can be set in different ways.

Point ptO;

Point pt1(1);

Point pt2(2.3, 52);

Point pt3(4.5, 7, 13.205);

ptO is declared without any arguments, i.e., using the default constructor, so the values
of its x, y, and z-coordinates are all 0.

ptl is declared and initialized with one argument for the x-coordinate, so its y and z-
coordinates are initialized with the values of CURR_Y and CURR_Z respectively. The latter
are static constant data members of class Point, whose values are 0 by default. They can
be reset by the user, who should make sure that they have sensible values.

pt2 is declared and initialized with two arguments for its x and y-coordinates, so its
z-coordinate is initialized to the value of CURR_Z. Finally, pt3 has an argument for each of
its coordinates.

Please note that ptO is constructed using a the default constructor, whereas the
other Points are constructed using a constructor with one required argument (for the
x-coordinate), and two optional arguments (for the y and z-coordinates). The default
constructor always sets all the coordinates to 0, irrespective of the values of CURR_Y and
CURR_Z.

2.2 Setting and Assigning to Points

It is possible to change the value of the coordinates of Points by using the assignment
operator = (Point: :operator=()) or the function Point::set() (with appropriate argu-
ments):

Point pt0(2, 3.3, 7);
Point ptil;

ptl = ptO;

ptO0.set (34, 99, 107.5);
ptO.show("ptO:");

+ ptO: (34, 99, 107.5)
ptl.show("ptl:");

4 pti: (2, 3.3, 7)

In this example, ptO is initialized with the coordinates (2, 3.3, 7), and pt1 with the
coordinates (0, 0, 0). ptl = ptO causes ptl to have the same coordinates as ptO, then
the coordinates of ptO are changed to (34, 99, 107.5). This doesn’t affect ptl, whose
coordinates remain (2, 3.3, 7).

Another way of declaring and initializing Points is by using the copy constructor:

Point pt0(1, 3.5, 19);
Point pt1(pt0);

Point pt2 = ptO;

Point pt3;

pt3 = ptO;

Chapter 2: Points 12

In this example, pt1 and pt2 are both declared and initialized using the copy constructor;
Point pt2 = pt0 does not invoke the assignment operator. pt3, on the other hand, is
declared using the default constructor, and not initialized. In the following line, pt3 = pt0
does invoke the assignment operator, thus resetting the coordinate values of pt3 to those
of ptO.

Chapter 3: Transforming Points 13

3 Transforming Points

Points don’t always have to remain in the same place. There are various ways of moving
or transforming them:

e Shifting. This is often called “translating”, but the operation in Metafont that performs
translation is called shift, so I call it “shifting”.

e Scaling.
e Shearing.

e Rotating about an axis.

class Point has several member functions for applying these affine transformations! to
a Point. Most of the arguments to these functions are of type real. As you may know,
there is no such data type in C++. I have defined real using typedef to be either float
or double, depending on the value of a preprocessor switch for conditional compilation.?
3DLDF uses many real values and I wanted to be able to change the precision used by
making one change (in the file ‘pspglb.web’) rather than having to examine all the places
in the program where float or double are used. Unfortunately, setting real to double
currently doesn’t work.

3.1 Shifting

The function shift() adds its arguments to the corresponding world_coordinates of
a Point. In the following example, the function show() is used to print the world_
coordinates of pO to standard output.

Point p0(0, 0, 0);
pO.shift(1, 2, 3);
pO.show("p0:");

4 p0: (1, 2, 3)
pO.shift(10);
pO.show("p0:");

4 p0: (11, 2, 3)
p0.shift (0, 20);
pO.show("p0:");

4 p0: (11, 22, 3)
p0.shift (0, 0, 30);
pO.show("p0:");

4 po: (11, 22, 33)

L Affine transformations are operations that have the property that parallelity of lines is maintained.
That is, if two lines (each determined by two points) are parallel before the transformation, they will
also be parallel after the transformation. Affine transformations are discussed in many books about
computer graphics and geometry. For 3DLDF, I've mostly used Jones, Computer Graphics through Key
Mathematics and Salomon, Computer Graphics and Geometric Modeling.

I try to avoid the use of preprocessor macros as much as possible, for the reasons given by Stroustrup in
the The C++ Programming Language, §7.8, pp. 160-163, and Design and Evolution of C++, Chapter
18, pp. 423-426. However, conditional compilation is one of the tasks that only the preprocessor can
perform.

Chapter 3: Transforming Points 14

shift takes three real arguments, whereby the second and third are optional. To shift a
Point in the direction of the positive or negative y-axis, and/or the positive or negative
z-axis only, then a 0 argument for the x direction, and possibly one for the y direction must
be used as placeholders, as in the example above.

shift () can be invoked with a Point argument instead of real arguments. In this case,
the x, y, and z-coordinates of the argument are used for shifting the Point:

Point a(10, 10, 10);
Point b(1, 2, 3);
a.shift(b);
a.show("a:")

4 a: (11, 12, 13)

Another way of shifting Points is to use the binary += operator (Point: :operator+=())
with a Point argument.

Point a0O(1, 1, 1);
Point al1(2, 2, 2);
a0 += al;
a0.show("a0:");

-4 a0: (3, 3, 3)

3.2 Scaling

The function scale() takes three real arguments. The x, y, and z-coordinates of the
Point are multiplied by the first, second, and third arguments respectively. Only the first
argument is required; the default for the others is 1.

If one wants to perform scaling in either the y-dimension only, or the y and z-dimensions
only, a dummy argument of 1 must be passed for scaling in the x-dimension. Similarly,
if one wants to perform scaling in the z-dimension only, dummy arguments of 1 must be
passed for scaling in the x and y-dimensions.

Point p0(1, 2, 3);
pO.scale(2, 3, 4);
pO.show("p0:");

4 p0: (2, 6, 12)
pO.scale(2);
pO.show("p0:");

4 p0: (4, 6, 12)
pO.scale(1l, 3);
pO.show("p0:");

4 po: (4, 18, 12)
pO.scale(l, 1, 3);
pO.show("p0:");

4 pO: (4, 18, 36)

Chapter 3: Transforming Points 15

3.3 Shearing

Shearing is more complicated than shifting or scaling. The function shear () takes six real
arguments. If p is a Point, then p.shear(a, b, c, d, e, f) sets x, to x, + ay, + bz,, y,
to y, + cxp + dz,, and z, to z, + ex, + fy,. In this way, each coordinate of a Point is
modified based on the values of the other two coordinates, whereby the influence of the
other coordinates on the new value is weighted according to the arguments.

Point p(1, 1, 1);
p.shear(1);
p.-show("p:");

4 p: (2, 1, 1)
p-set(1, 1, 1);
p.shear(1, 1);
p.show("p:");

4 p: (3, 1, 1)
p-set(1, 1, 1);
p.shear(1, 1, 2, 2, 3, 3);
p.show("p:");

4 p: (3, 5,7

Fig. 1 demonstrates the effect of shearing the points of a rectangle in the x-y plane.

Point PO;

Point P1(3);

Point P2(3, 3);

Point P3(0, 3);

Rectangle r(p0, pl, p2, p3);
r.draw();

Rectangle q(r);
q.shear(1.5);

q.draw(black, "evenly");

Chapter 3: Transforming Points

P, = (3, 3)

Q?) = (45a 3) QQ = (757 3)

e]

Figure 1.

16

Chapter 3: Transforming Points 17

3.4 Rotating

The function rotate () rotates a Point about one or more of the main axes. It takes three
real arguments, specifying the angles of rotation in degrees about the x, y, and z-axes
respectively. Only the first argument is required, the other two are 0 by default. If rotation
about the y-axis, or the y and z-axes only are required, then 0 must be used as a placeholder
for the first and possibly the second argument.

Point p(0, 1);
p.rotate(90);
p.show("p:");

4 p: (0, 0, -1)
p.rotate(0, 90);
p-show("p:");

4 p: (1, 0, 0)
p.rotate(0, 0, 90);
p.show("p:");

4 p: (0, 1, 0)

The rotations are performed successively about the x, y, and z-axes. However, rotation
is not a commutative operation, so if rotation about the main axes in a different order is
required, then rotate () must be invoked more than once:

Point A(2, 3, 4);

Point B(A);

A.rotate(30, 60, 90);

A.show("A:");

-+ A: (-4.59808, -0.700962, 2.7141)
B.rotate(0, 0, 90);

B.rotate(0, 60);

B.rotate(30);

B.show("B:");

-4 B: (-4.9641, 1.43301, -1.51795)

Rotation need not be about the main axes; it can also be performed about a line defined
by two Points. The function rotate() with two Point arguments and a real argument
for the angle of rotation (in degrees) about the axis. The real argument is optional, with
180° as the default.

Point pO (-1.06066, 0, 1.06066);
Point p1 (1.06066, 0, -1.06066);

pl *= pO.rotate(0, 30, 30);
pO.show("p0:");

- pO0: (-1.25477, -0.724444, 0.388228)
pl.show("pl:");

4 pi: (1.25477, 0.724444, -0.388228)
pO.draw(pl);

Point p2(1.06066, 0, 1.06066);
p2.show("p2:");

- p2: (1.06066, 0, 1.06066)

Chapter 3: Transforming Points 18

Point p3(p2);

p3.rotate(pl, p0, 45);
p3.show("p3:");

- p3 (1.09721, 1.15036, 1.17879)
Point p4(p2);

p4.rotate(pl, pO, 90);
p4.show("pd:");

4 p4: (0.882625, 2.05122, 0.485242)
Point p5(p2);

p5.rotate(pl, pO, 135);
p5.show("p5:");

- pb5: (0.542606, 2.17488, -0.613716)
Point p6(p2);

p6.rotate(pl, pO);

p6.show("p6:");

- p6: (0.276332, 1.44889, -1.47433)

y

&
e

Figure 2.

I have sometimes gotten erroneous results using rotate () for rotation about two Points.
It’s usually worked to reverse the order of the Point arguments, or to change sign of the
angle argument. I think I've fixed the problem, though.

Chapter 4: Transforms 19

4 Transforms

When Points are transformed using shift (), shear(), or one of the other transforma-
tion functions, the world_coordinates are not modified directly. Instead, another data
member of class Point is used to store the information about the transformation, namely
transform of type class Transform. A Transform object has a single data element of
type Matrix and a number of member functions. A Matrix is simply a 4 x 4 array! of
reals defined using typedef real Matrix[4] [4]. Such a matrix suffices for performing all
of the transformations (affine and perspective) possible in three-dimensional space.? Any
combination of transformations can be represented by a single transformation matrix. This
means that consecutive transformations of a Point can be “saved up” and applied to its
coordinates all at once when needed, rather than updating them for each transformation.

Transforms work by performing matrix multiplication of Matrix with the homogeneous
world_coordinates of Points. If a set of homogeneous coordinates « = (x,y, z,w) and

a e 1t m
Matrix M = b f i m
c g k o
d h I p

then the set of homogeneous coordinates 3 resulting from multiplying o and M is calculated
as follows:

B =axM = ((za+yb+zctwd), (xe+yf+zg+wh), (xi+yj+zk+wl), (xm+yn+zo+wp))

Please note that each coordinate of 3 can be influenced by all of the coordinates of «.

Operations on matrices are very important in computer graphics applications and are
described in many books about computer graphics and geometry. For 3DLDF, I've mostly
used Huw Jones’ Computer Graphics through Key Mathematics and David Salomon’s Com-
puter Graphics and Geometric Modeling.

It is often useful to declare and use Transform objects in 3DLDF, just as it is for
transforms in Metafont. Transformations can be stored in Transforms and then be used
to transform Points by means of Point: :operator*=(const Transform&).

1. Transform t;

2. t.shift (0, 1);

3. Point p(1, 0, 0);
4. p *= t;

L 1t is unfortunate that the terms “array”, “matrix”, and “vector” have different meanings in C++ and
in normal mathematical usage. However, in practice, these discrepancies turn out not to cause many
problems. Stroustrup, The C++ Programming Language, § 22.4, p. 662.

In fact, none of the operations for transformations require all of the elements of a 4 x 4 matrix. In
many 3D graphics programs, the matrix operations are modified to use smaller transformation matrices,
which reduces the storage requirements of the program. This is a bit tricky, because the affine trans-
formations and the perspective transformation use different elements of the matrix. I consider that the
risk of something going wrong, possibly producing hard-to-find bugs, outweighs any benefits from saving
memory (which is usually no longer at a premium, anyway). In addition, there may be some interesting
non-affine transformations that would be worth implementing. Therefore, I've decided to use full 4 x 4
matrices in 3DLDF.

Chapter 4: Transforms 20

5. p.show("p:");
4 p: (1, 1, 0)

When a Transform is declared (line 1), it is initialized to an identity matrix. All identity
matrices are square, all of the elements of the main diagonal (upper left to lower right) are
1, and all of the other elements are 0. So a 4 x 4 identity matrix, as used in 3DLDF, looks
like this:

1 0 0 0
01 00
0 010
0 0 0 1

If a matrix A is multiplied with an identity matrix I, the result is identical to A, i.e.,
A x I = A. This is the salient property of an identity matrix.

The same affine transformations are applied in the same way to Transforms as they are
to Points, i.e., the functions scale(), shift (), shear (), and rotate() correspond to the
Point versions of these functions, and they take the same arguments:

Point p;

Transform t;

p.shift(3, 4, 5);
t.shift(3, 4, 5);

= p.transform = t
p.show_transform("p:");

- p:
Transform:
0 0.707 0.707 0
-0.866 0.354 -0.354 0
-0.5 -0.612 0.612 0
0 0 0 1
t.show("t:");
- t:
0 0.707 0.707 0
-0.866 0.354 -0.354 0
-0.5 -0.612 0.612 0
0 0 0 1

4.1 Applying Transforms to Points

A Transform t is applied to a Point P wusing the binary =*= operation
(Point: :operator*=(const Transform&)) which performs matrix multiplication
of P.transform by t. See Section 22.6 [Point Reference; Operators|, page 124.

Point P(0, 1);
Transform t;
t.rotate(90);
t.show("t:");
4 t:

Chapter 4: Transforms 21

1 0 0 0
0 0 -1 0
0 1 0 0
0 0 0 1
P x= t;
P.show_transform("P:");
- P:
Transform:
1 0 0 0
0 0 -1 0
0 1 0 0
0 0 0 1

P.show("P:");
4 P: (0, 0, -1)

In the example above, there is no real need to use a Transform, since P.rotate(90)
could have been called directly. As constructions become more complex, the power of
Transforms becomes clear:

Point p0(0, 0, 0);
Point p1(10, 5, 10);
Point p2(16, 14, 32);
Point p3(25, 50, 99);
Point p4(12, 6, 88);
Transform a;
a.shift(2, 3, 4);
a.scale(1, 3, 1);
9. p2 *= p3 *= a;
10. a.rotate(p0, pl, 75);
11. p4 *= a;
12. p2.show("p2:");

4 p2: (18, 51, 36)
13. p3.show("p3:");

4 p3: (27, 159, 103)
14. p4.show("p4:");
- p4: (24.4647, -46.2869, 81.5353)

PN T WD

In this example, a is shifted and scaled, and a is applied to both in line 9. This works,
because the binary operation operator*=(const Transform& t) returns t, making it pos-
sible to chain invocations of *=. Following this, a is rotated 75° about the line through pg
and p,. Finally, all three transformations, which are stored in a, are applied to p,.

4.2 Inverting Transforms

Inversion is another operation that can be performed on Transforms. This makes it possible
to reverse the effect of a Transform, which may represent multiple transformations.

Chapter 4: Transforms 22

Point p;

Transform t;
t.shift(1, 2, 3);
t.scale(2, 3, 4);
t.rotate(45, 45, 30);
t.show("t:");

- t:

1.22 0.707 1.41 0
0.238 2.59 -1.5 0
-3.15 1.45 2 0
-7.74 10.2 4.41 1

p *= t;
p.show("p:");

4 p: (-7.74, 10.2, 4.41)
Transform u;
u = t.inverse();
u.show("u:");
- u:
0.306 0.0265 -0.197 2.85e-09
0.177 0.287 0.0906 -1.12e-09

0.354 -0.167 0.125 0
-1 -2 -3 1
P *= u;
p-show("p:");
4 p: (0, 0, 0)
u k= t;
u.show("u:");
- u:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

If inverse() is called with no argument, or with the argument false, it returns a
Transform representing its inverse, and remains unchanged. If it is called with the argument
true, it is set to its inverse.

Complete reversal of the transformations applied to a Point, as in the previous example,
probably won’t make much sense. However, partial reversal is a valuable technique. For
example, it is used in rotate() for rotation about a line defined by two Points. The
following example merely demonstrates the basic principle; an example that does something
useful would be too complicated.

Chapter 4: Transforms

Transform t;

t.shift (3, 4, 5);
t.rotate(45);

t.scale(2, 2, 2);

Point p;

p *= t;

p.show("p:");

4 p: (6, 12.7279, 1.41421)
t.inverse(true);
p.rotate(90, 90);

p *= t;

p.show("p:");

- p: (3.36396, -5.62132, -2.37868)

Chapter 5: Drawing and Labeling Points 24

5 Drawing and Labeling Points

5.1 Drawing Points

It’s all very well to declare Points, place them at particular locations, print their locations to
standard output, and transform them, but none of these operations produce any MetaPost
output. In order to do this, the first step is to use drawing and filling commands. The
drawing and filling commands in 3DLDF are modelled on those in Metafont.

The following example demonstrates how to draw a dot specifying a Color (see Chap-
ter 16 [Color Reference], page 88) and a pen'.
Point P(0, 1);
P.drawdot(Colors::black, "pencircle scaled 3mm");

p
O

Figure 3.

In drawdot(), a Color argument precedes the string argument for the pen, so
“Colors: :black” must be specified as a placeholder in the call to drawdot ().?2

The following example “undraws” a dot at the same location using a smaller pen.
undraw () does not take a Color argument.

p.undrawdot ("pencircle scaled 2mm");

p
O

Figure 4.

For complete descriptions of drawdot () and undrawdot (), see Section 22.18 [Point Refer-
ence; Drawing], page 144.

Drawing and undrawing dots is not very exciting. In order to make a proper drawing it
is necessary to connect the Points. The most basic way of doing this is to use the Point
member function draw() with a Point argument:

Point pO;
Point p1(2, 2);
pO.draw(pl);

Pens are a concept from Metafont. In 3DLDF, there is currently no type “Pen”. Pen arguments to
functions are simply strings, and are written unaltered to out_stream. For more information about
Metafont’s pens, see Knuth, The Metafontbook, Chapter 4.

Colors are declared in the namespace Colors, so if you have a “using” declaration in the function where
you use drawdot (), you can write “black” instead of “Colors::black”. For more information about
namespaces, see Stroustrup, The C++ Programming Language, Chapter 8.

Chapter 5: Drawing and Labeling Points 25

P1

DPo

Figure 5.
pO.draw(pl) is equivalent in its effect to pl.draw(p0).

The function Point: :draw() takes a required Point& argument (a reference® to a Point)
an optional Color argument, and optional string arguments for the dash pattern and the
pen. The string arguments, if present, are passed unchanged to the output file. The empty
string following the argument p1l is a placeholder for the dash pattern argument, which
isn’t used here.

pO.draw(pl, Colors::gray, "", "pensquare scaled .5cm rotated 45");

oP1

Poe

Figure 6.

The function Point: :undraw() takes a required Point& argument and optional string
arguments for the dash pattern and the pen. Unlike Point: :draw(), a Color argument
would have no meaning for Point: :undraw(). The string arguments are passed unchanged
to the output file.

undraw () can be used to “hollow out” the region drawn in Fig. 6. Since a dash pattern
is used, portions of the middle of the region are not undrawn.

pO.undraw(pl, "evenly scaled 6", "pencircle scaled .2cm");

D1

Poe

Figure 7.

3 «A reference is an alternative name for an ob ject. The main use of references is for specifying arguments
and return values for functions in general and for overloaded operators (Chapter 11) in particular.”
Stroustrup, The C++ Programming Language, §5.5, p. 97.

Chapter 5: Drawing and Labeling Points 26

For complete descriptions of draw() and undraw(), see Section 22.18 [Point Reference;
Drawing], page 144.

5.2 Labeling Points

The labels in the previous examples were made by using the functions Point: :1label () and
Point::dotlabel (), which make it possible to include TEX text in a drawing.

label() and dotlabel() take string arguments for the text of the label and the po-
sition of the label with respect to the Point. The label text is formatted using TEX, so it
can contain math mode material between dollar signs. Please note that double backslashes
must be used, where a single backslash would suffice in a file of MetaPost code, for example,
for TEX control sequences. Alternatively, a short argument can be used for the label.

The position argument is optional, with "top" as the default. If the empty string ""
is used, the label will centered about the Point itself. This will usually only make sense
for 1abel (), because it would otherwise interfere with the dot. Valid arguments for the
position are the same as in MetaPost: "top", "bot" (bottom), "1ft" (left), "rt" (right),
"ulft" (upper left), "urt" (upper right), "11ft" (lower left), and "1rt" (lower right).

Point pO;

Point p1(1);

Point p2(2);

Point p3(p0);

Point p4(pl);

Point p5(p2);

p3 *= p4 *= pb.shift(0, 1);
pO.draw(pl);

pl.draw(p2);

p2.draw(p5);

p5.draw(p4) ;

p4.draw(p3);

p3.draw(p0) ;

p0.label($p_0%, "");

pl.dotlabel(1);

p2.dotlabel ("p2", "bot");
p3.dotlabel ("This is p_3", "1ft");
p4.label(4);

p5.1label ("$\\leftarrow p_53%", "rt");

This is p3 D5

o

p2

Figure 8.

Chapter 5: Drawing and Labeling Points 27

For complete descriptions of Point::label() and Point::dotlabel(), see
Section 22.19 [Points; Labelling], page 147.

Chapter 6: Paths 28

6 Paths

Points alone are not enough for making useful drawings. The next step is to combine them
into Paths, which are similar to Metafont’s paths, except that they are three-dimensional.
A Path consists of a number of Points and strings representing the connectors. The latter
are not processed by 3DLDF, but are passed unchanged to the output file. They must be
valid connectors for MetaPost, e.g.:

curl{2}..
{dir 60}..
{z1 - z2}..
. tension 1 and 1.5..
..controls zl1 and z2..

Usually, it will only make sense to use .. or —-—, and not ..., -———, tension, curl,
controls, or any of the other possibilities, in Paths, unless you are sure that they will
only be viewed with no foreshortening due to the perspective projection. This can be the
case, when a Path lies in a plane parallel to one of the major planes, and is projected
using parallel projection onto that plane. Otherwise, the result of using these connectors is
likely to be unsatisfactory, because MetaPost performs its calculations based purely on the
two-dimensional values of the points in the perspective projection. While the Points on
the Path will be projected correctly, the course of the Path between these Points is likely
to differ, depending on the values of the Focus used (see Section 9.2 [Focuses|, page 63),
so that different views of the same Path may well be mutually inconsistent. This problem
doesn’t arise with “-~-”, since the perspective projection does not “unstraighten” straight
lines, but it does with “..”, even without tension, curl, or controls. The solution is
to use enough Points, since a greater number of Points on a Path tends to reduce the
number of possible courses through the Points.!

6.1 Declaring and Initializing Paths

There are various ways of declaring and initializing Paths. The simplest is to use the
constructor taking two Point arguments:

Point A;

Point B(2, 2);
Path p(A, B);
p.draw();

I 1 believe that counter-examples could probably constructed, but for the most common cases, the principle
applies.

Chapter 6: Paths 29

Figure 9.

Paths created in this way are important, because they are guaranteed to be linear, as
long as no operations are performed on them that cause them to become non-linear. Linear
Paths can be used to find intersections. See Section 26.17 [Path Intersections|, page 198.

Paths can be declared and initialized using a single connector and an arbitrary number
of Points. The first argument is a string specifying the connector. It is followed by a
bool, indicating whether the Path is cyclical or not. Then, an arbitrary number of pointers
to Point follow. The last argument must be 0.

Point p[3];

pl0] .shift(1);

pl1].set(1, 2, 2);

pl2].set(1, 0, 2);

Path pa("--", true, &pl[0], &pl[1], &pl[2], 0);
pa.draw();

(1,2, 2)

(1,0, 2)

(1,0, 0)

Figure 10.

Another constructor must be used for Paths with more than one connector and an
arbitrary number of Points. The argument list starts with a pointer to Point, followed by
string for the first connector. Then, pointer to Point arguments alternate with string
arguments for the connectors. Again, the list of arguments ends in 0. There is no need for
a bool to indicate whether the Path is cyclical or not; if it is, the last non-zero argument
will be a connector, otherwise, it will be a pointer to Point.

Point p[8];

2 It’s easy to forget to use Point* arguments, rather than plain Point arguments, and to forget to end
the list of arguments with 0. If plain Point arguments are used, compilation fails with GCC. With the
DEC compiler, compilation succeeds, but a memory fault error occurs at run-time. If the argument list
doesn’t end in 0, neither compiler signals an error, but a memory fault error always occurs at run-time.

Chapter 6: Paths 30
pl0] .set(-2);
pl1].set(2);
p[2].set(0, 0, -2);
p[3].set(0, 0, 2);
pl4] = p[0] .mediate(p[2]);
pl5] = p[2] .mediate(p[1]);
pl6] = pl[1].mediate(p[3]);
pl7] = p[3].mediate(p[0]);
pl4] *= p[5] *= p[6] *= p[7].shift(0, 1);
Path pa(&p[0], "..", &pl[4l, "...", &pl2],
w..", &plsl, "...", &pl1l, "..", &pl6],
oout, &pl31, "ot &pl7l, ML, 0D

pa.draw();

y

b7 Pe

b
Y22 b5 Z
//'\ D1
) X
2
Figure 11.

As mentioned above (see Section 1.5.1 [Accuracy], page 7), specifying connectors is prob-
lematic for three-dimensional Paths, because MetaPost ultimately calculates the “most
pleasing curve” based on the two-dimensional points in the MetaPost code written by
3DLDF.? For this reason, it’s advisable to avoid specifying ‘curl’, ‘dir’, ‘tension’ or
control points in connectors. The more Points a (3DLDF) Path or other object contains,
the less freedom MetaPost has to determine the (MetaPost) path through them. So a
three-dimensional Path or other object in 3DLDF should have enough Points to ensure
satisfactory results. The Path in Fig. 11 does not really have enough Points. It may re-

quire some
case.

trial and error to determine what a sufficient number of Points is in a given

Paths are very flexible, but not always convenient. 3DLDF provides a number of classes
representing common geometric Shapes, which will be described in subsequent sections,
and I intend to add more in the course of time.

3 Knuth, The METAFONTbook, Chapter 14, p. 127.

Chapter 6: Paths 31

6.2 Drawing and Filling Paths

The easiest way to draw a Path is with no arguments.

Point pt[5];

pt[0] .set (-1, -2);

pt[1].set (0, -3);

pt[2].set(1, 0);

pt[3].set(2, 1);

pt[4] .set(-1, 2);

Path pa("..", true, &pt[0], &pt[1], &pt[2], &pt[3], &pt[4], 0);
pa.draw();

(2,1)

(1,0)

Figure 12.

Since pa is closed, it can be filled as well as drawn. The following example uses £i11 ()
with a Color argument, in order to avoid having a large splotch of black on the page
Common Colors are declared in the namespace Colors. See Chapter 16 [Color Reference],
page 88.

pa.fill(Colors: :gray);

Chapter 6: Paths 32

Figure 13.

Closed Paths can be filled and drawn, using the function filldraw(). This func-
tion draws the Path using the pen specified, or MetaPost’s currentpen by default. A
Color for drawing the Path can also be specified, otherwise, the default color (currently
Colors: :black) is used. In addition, the Path is filled using a second Color, which can
be specified, or the background_color (Colors: :background_color), by default. Filling a
Path using the background color causes it to hide objects that lie behind it. See Section 9.3
[Surface Hiding], page 67, for a description of the surface hiding algorithm, and examples.
Currently, this algorithm is quite primitive and only works for simple cases.

Point p0(-3, 0, 1);
Point p1(3, 1, 1);
pO.draw(pl);
pa.filldraw();

(3,1,1)

(-3,0,1)

Figure 14.

Chapter 6: Paths 33

The following example uses arguments for the Colors used for drawing and filling, and
the pen. The empty string argument before the pen argument is a placeholder for the dash
pattern argument.

pa.filldraw(black, gray, "",
"pensquare xscaled 3mm yscaled Ilmm rotated 60");

Figure 15.

Paths can also be “undrawn”, “unfilled”, and “unfilldrawn”, using the corresponding
functions:
pa.fill(gray);
pO.undraw(pl, "", "pencircle scaled 3mm");

(_37 07 1)

Figure 16.
pa.fill(gray);

Chapter 6: Paths 34

Path q;

q = pa;
q.scale(.5, .5);
q.unfill();

Figure 17.

The function unfilldraw() takes a Color argument for drawing the Path, which is
*Colors: :background_color by default. This makes it possible to unfill the Path while
drawing the outline with a visible Color. On the other hand, it also makes it necessary to
specify *Colors: :background_color or Colors: :white, if the user wants to use the dash
pattern and/or pen arguments, without drawing the Path.

pa.fill(gray);
q.unfilldraw(white, "", "pensquare xscaled 3mm yscaled 1lmm");

Figure 18.

Chapter 6: Paths 35

The following example demonstrates the use of unfilldraw() with black as its Color
argument. Unfortunately, it also demonstrates one of the limitations of the surface hiding
algorith: The line from pO to pl is hidden by the filled Path pa. Since the portion of pa
covered by Path q has been unfilled, pyp; should be visible as it passes through q. However,
from the point of view of 3DLDF, there is no relationship between pa and q; nor does it
“know” whether a Path has been filled or unfilled. If it’s on a Picture, it will hide objects
lying behind it, unless the surface hiding algorithm fails for another reason. See Section 9.3
[Surface Hiding], page 67, for more information.

pO.draw(pl);
pa.fill(gray);

q.unfilldraw(black, "", "pensquare xscaled 3mm yscaled 1lmm");
.11
.
(_37071)
Figure 19.

See Section 26.12 [Paths; Drawing and Filling], page 180, for more information, and
complete descriptions of the functions.

Chapter 7: Plane Figures 36

7 Plane Figures

3DLDF currently includes the following classes representing plane geometric figures:
Polygon, Reg_Cl_Plane_Curve (“Regular Closed Plane Curve”), Reg_Polygon (“Regular
Polygon”), Rectangle, Ellipse and Circle. Polygon and Reg_Cl_Plane_Curve are
derived from Path, Reg_Polygon and Rectangle are derived from Polygon, and Ellipse
and Circle are derived from Reg_Cl_Plane_Curve. Polygon and Reg_Cl_Plane_Curve
are meant to be used as base classes only, so objects of these types should normally never
be declared.

Since Reg_Polygon, Rectangle, Ellipse, and Circle all ultimately derive from Path,
they are really just special kinds of Path. In particular, they inherit their drawing and
filling functions from Path, and their transformation functions take the same arguments as
the Path versions. They also have constructors and setting functions that work in a similar
way, with a few minor differences, to account for their different natures. See Chapter 27
[Polygon Reference], page 199, Chapter 29 [Rectangle Reference], page 211, Chapter 31
[Ellipse Reference|, page 222, and Chapter 32 [Circle Reference], page 238, for complete
information on these classes.

7.1 Regular Polygons

The following example creates a pentagon in the x-z plane, centered about the origin, whose
enclosing circle has a radius equal to 3cm.

default_focus.set(2, 3, -10, 2, 3, 10, 10);

Reg_Polygon p(origin, 5, 3);

p.draw();

Figure 20.

Three additional arguments cause the pentagon to be rotated about the x, y, and z axes
by the amount indicated. In this example, it’s rotated 90° about the x-axis, so that it comes
to lie in the x-y plane:

Reg_Polygon p(origin, 5, 3, 90);

Chapter 7: Plane Figures

p.draw();

/S

Figure 21.

37

In this example, it’s rotated 36° about the y-axis, so that it appears to point in the
opposite direction from the first example:

Reg_Polygon p(origin, 5, 3, 0, 36);

p.draw();

In this example, it’s rotated 90° about the z-axis, so that it lies in the z-y plane:

Figure 22.

Reg_Polygon p(origin, 5, 3, 0, 0, 90);

p.draw();

Chapter 7: Plane Figures 38

Figure 23.

In this example, it’s rotated 45° about the x, y, and z-axes in that order:

Reg_Polygon p(origin, 5, 3, 45, 45, 45);
p.draw();

Figure 24.

Reg_Polygons need not be centered about the origin. If another Point pt is used as
the first argument, the Reg_Polygon is first created with its center at the origin, then the
specified rotations, if any, are performed. Finally, the Reg_Polygon is shifted such that its
center comes to lie on pt:

Point P(-2, 1, 1);
Reg_Polygon hex(P, 6, 4, 60, 30, 30);
hex.draw();

Chapter 7: Plane Figures 39

Figure 25.

In the following example, the Reg_Polygon polygon is first declared using the de-
fault constructor, which creates an empty Reg_Polygon. Then, the polygon is repeatedly
changed using the setting function corresponding to the constructor used in the previous
examples. Fig. 26 demonstrates that a given Reg_Polygon need not always have the same
number of sides.

Point p(0, -3);
Reg_Polygon polygon;
for (int i = 3; i < 9; ++i)
{
polygon.set(p, i, 3);
polygon.draw() ;
p-shift (0, 1);

Figure 26.

Chapter 7: Plane Figures 40

7.2 Rectangles

A Rectangle can be constructed in the x-z plane by specifying a center Point, the width,
and the height:

Rectangle r(origin, 2, 3);

r.draw();

Figure 27.
Three additional arguments can be used to specify rotation about the x, y, and z-axes
respectively:
Rectangle r(origin, 2, 3, 30, 45, 15);
r.draw();

T

Figure 28.

If a Point p other than the origin is specified as the center of the Rectangle, the latter
is first created in the x-z plane, centered about the origin, as above. Then, any rotations
specified are performed. Finally, the Rectangle is shifted such that its center comes to lie
at p:

Chapter 7: Plane Figures 41

Point p0(.5, 1, 3);
Rectangle r(p0O, 4, 2, 30, 30, 30);

r.draw();
y
0 po = (0.5,1,3)
</z
X
Figure 29.

This constructor has a corresponding setting function:

Rectangle r;
for (int 1 = 0; i < 180; i += 30)
{
r.set(origin, 4, 2, i);
r.draw();

}

Figure 30.

Rectangles can also be specified using four Points as arguments, whereby they must
be ordered so that they are contiguous in the resulting Rectangle:

Chapter 7: Plane Figures 42

Point pt[4];

pt[0] .shift (-1, -2);

pt[2] = pt[1] = pt[0];

pt[1] .rotate(180);

pt[3] = pt[1];

pt[2] *= pt[3].rotate(0, 180);

Rectangle r(pt[0], pt[2], pt[3], ptl[1l);
r.draw();

Figure 31.

This constructor checks whether the Point arguments are coplanar, however, it does not
check whether they are really the corners of a valid rectangle; the user, or the code that
calls this function, must ensure that they are. In the following example, r, although not
rectangular, is a Rectangle, as far as 3DLDF is concerned:

pt[0] .shift (0, -1);

pt[3].shift (0, 1);

Rectangle q(pt[0], pt[2], pt[3], ptl[1l);
q.draw();

Chapter 7: Plane Figures 43

(—1,2)‘/

)
—

Figure 32.

This constructor is not really intended to be used directly, but should mostly be called
from within other functions, that should ensure that the arguments produce a rectangular
Rectangle. There is also no guarantee that transformations or other functions called on
Rectangle, Circle, or other classes representing geometric figures won'’t cause them to
become non-rectangular, non-circular, or otherwise irregular. Sometimes, this might even
be desirable. I plan to add the function Rectangle: :is_rectangular () soon, so that users
can test Rectangles for rectangularity.

7.3 Ellipses

Ellipse has a constructor similar to those for Reg_Polygon and Rectangle. The first
argument is the center of the Ellipse, and the following two specify the lengths of the
horizontal and vertical axes respectively. The Ellipse is first created in the x-z plane,
centered about the origin. The horizontal axis lies along the x-axis and the vertical axis lies
along the z-axis. The three subsequent arguments specify the amounts of rotation about
the x, y, and z-axes respectively and default to 0. Finally, E11ipse is shifted such that its
center comes to lie at the Point specified in the first argument.

Point pt(-1, 1, 1);
Ellipse e(pt, 3, 6, 90);
e.draw();

Chapter 7: Plane Figures

(-1,1,1)

Figure 33.

As you may expect, this constructor has a corresponding setting function:

Ellipse e;
real h_save = 1.5;
real v_save = 2;

real h = h_save;

real v = v_save;

Point p(-1);

for (int 1 = 0; i < 5; ++i)

{

e.set(p, h, v, 90);
e.draw();
h_save += .25;
v_save += .25;
h *= sqrt(h_save);
v *= sqrt(v_save);
p.shift(0, 0, 2);

44

Chapter 7: Plane Figures 45

Figure 34.

7.4 Circles

Circles are constructed just like Ellipses, except that the vertical and horizontal axes
are per definition the same, so there’s only one argument for the diameter, instead of two

for the horizontal and vertical axes:
Point P(0, 2, 1);
Circle c(P, 3.5, 90, 90);
c.draw();

(0,2,1)

Figure 35.

Chapter 7: Plane Figures 46

This constructor, too, has a corresponding setting function:
Circle c;
Point p(-1, 0, 5);
for (int 1 = 0; i < 16; ++i)
{
c.set(p, 5, i * 22.5, 0, 0, 64);
c.draw();

Z
D
—

Figure 36.

In the preceding example, the last argument to set (), namely “64”, is for the number
of Points used for constructing the perimeter of the Circle. The default value is 16,
however, if it is used, foreshortening distorts the most nearly horizontal Circle. Increasing
the number of points used improves its appearance. However, there may be a limit to how
much improvement is possible. See Section 1.5.1 [Accuracy]|, page 7.

Chapter 8: Solid Figures 47

8 Solid Figures

8.1 Cuboids

A cuboid is a solid figure consisting of six rectangular faces that meet at right angles. A
cube is a special form of cuboid, whose faces are all squares. The constructor for the class
Cuboid follows the pattern familiar from the constructors for the plane figures: The first
argument is the center of the Cuboid, followed by three real arguments for the height,
width, and depth, and then three more real arguments for the angles of rotation about the
X, v, and z-axes. The Cuboid is first constructed with its center at the origin. Its width,
height, and depth are measured along the x, y, and z-axes respectively. If rotations are
specified, it is rotated about the x, y, z-axes in that order. Finally, it is shifted such that
its center comes to lie on its Point argument, if the latter is not the origin.

If the width, height, and depth arguments are equal, the Cuboid is a cube:

Cuboid cO(origin, 3, 3, 3, 0, 30);
cO.draw();

Figure 37.

In the following example, the Cuboid is “filldrawn”, so that the lines dilineating the
hidden surfaces of the Cuboid are covered.

Cuboid cl(origin, 3, 4, 5, 0, 30);
cl.filldraw();

Chapter 8: Solid Figures 48

Figure 38.

8.2 Polyhedron

The class Polyhedron is meant for use only as a base class; no objects of type Polyhedron
should be declared. Instead, there is a class for each of the different drawable polyhedra.
Currently, 3DLDF defines only three: Tetrahedron, Dodecahedron, and Icosahedron.
There’s no need for a Cube class, because cubes can be drawn using Cuboid (see Section 8.1
[Cuboid Getstart], page 47).

Polyhedra have a high priority in my plans for 3DLDF. I intend to add Octahedron
soon, which will complete the set of regular Platonic polyhedra. Then I will begin adding
the semi-regular Archimedean polyhedra, and their duals.

The constructors for the classes derived from Polyhedron follow the pattern familiar
from the classes already described. The constructors for the classes described below have
identical arguments: First, a Point specifying the center, then a real for the diameter of
the surrounding circle (Umkreis, in German) of one of its polygonal faces, followed by three
real arguments for the angles of rotation about the main axes.

8.2.1 Tetrahedron

The center of a tetrahedron is the intersection of the lines from a vertex to the center of
the opposite side. At least, in SDLDF, this is the center of a Tetrahedron. I’'m not 100°
certain that this is mathematically correct.

Tetrahedron t(origin, 4);
t.draw();
t.get_center() .dotlabel("c");

Chapter 8: Solid Figures

8.2.2 Dodecahedron

Lle)

Figure 39.

49

A dodecahedron has 12 similar regular pentagonal faces. The following examples show the
same Dodecahedron using different projections:

default_focus.set(2, 5, -10, 2, 5, 10, 10);
Dodecahedron d(origin, 3);

d.draw();

Parallel projection, x-y plane

Figure 40.

Chapter 8: Solid Figures

Parallel projection, x-z plane

Figure 41.

Please note that the Dodecahedron in Fig. 42 is drawn, and not filldrawn!

Parallel projection, z-y plane

Figure 42.

50

Chapter 8: Solid Figures

Perspective projection

Figure 43.

51

In Fig. 44, d is filldrawn. In this case, the surface hiding algorithm has worked properly.
See Section 9.3 [Surface Hiding], page 67.

Perspective projection

8.2.3 Icosahedron

Figure 44.

An icosahedron has 20 similar regular triangular faces. The following examples show the
same Icosahedron using different projections:

default_focus.set(3, 0, -10, 2, 0, 10, 10);

Icosahedron i(origin, 3);
i.draw();

Chapter 8: Solid Figures

Parallel projection, x-y plane

Figure 45.

Parallel projection, x-z plane

Figure 46.

Parallel projection, z-y plane

Figure 47.

52

Chapter 8: Solid Figures 53

Perspective projection—drawn

Figure 48.

In Fig. 49, i is filldrawn. In this case, the surface hiding algorithm has worked properly.
See Section 9.3 [Surface Hiding], page 67.

Perspective projection—filldrawn

Figure 49.

Chapter 9: Pictures 54

9 Pictures

Applying drawing and filling operations to the drawable objects described in the previous
chapters isn’t enough to produce output. These operations merely modify the Picture
object that was passed to them as an argument (current_picture, by default).

Pictures in 3DLDF are quite different from pictures in MetaPost. When a drawing
or filling operation is applied to an object O, a copy of O, C, is allocated on the free store,
a pointer to Shape S is pointed at C, and S is pushed onto the vector<Shape*> shapes
on the Picture P, which was passed as an argument to the drawing or filling command.
The arguments for the pen, dash pattern, Color, and any others, are used to set the
corresponding data members of C (not O).

In order to actually cause MetaPost code to be written to the output file, it is necessary
to invoke P.output (). Now, the appropriate version of output () is applied to each of the
objects pointed to by a pointer on P.shapes. output () is a pure virtual function in Shape,
so all classes derived from Shape must have an output () function. So, if shapes[0] points
to a Path, Path: :output () is called, if shapes[1] points to a Point, Point: :output () is
called, and if shapes [2] points to an object of a type derived from Solid, Solid: :output ()
is called. Point, Path, and Solid are namely the only classes derived from Shape for which
a version of output () is defined. All other Shapes are derived from one of these classes.
These output () functions then write the MetaPost code to the output file through the
output file stream out_stream.

beginfig(1l);

default_focus.set(0, 0, -10, 0, 0, 10, 10);
Circle c(origin, 3, 90);

c.draw();

c.shift(1.5);

c.draw();

current_picture.output();

endfig(1);

Figure 50.

The C++ code for Fig. 50 starts with the command beginfig(1l) and ends with the
command endfig(1). They simply write “beginfig({arg))” and “endfig()” to out_
stream, The optional unsigned int argument to endfig() is not written to out_stream,
it’s merely “syntactic sugar” for the user.

Chapter 9: Pictures

55

In MetaPost, the endfig command causes output and then clears currentpicture
This is not the case in 3DLDF, where Picture: :output() and Picture::clear() must

be invoked explicitly:

beginfig(1l);

Point pO;

Point p1(1, 2, 3);
pO.draw(pl);
current_picture.output();
endfig(1);

beginfig(2);
current_picture.clear();
Circle C(origin, 3);
C.£fil1Q);
current_picture.output();
endfig(2);

In Fig. 51, two Pictures are used within a single figure.

beginfig(1);

Picture my_picture;

default_focus.set(0, 0, -10, 0, 0, 10, 10);
Circle c(origin, 3, 90);
c.draw(my_picture);

my_picture.output();

c.shift(1.5);

c.fill(light_gray);
current_picture.output();

endfig(1);

Figure 51.

Multiple objects, or complex objects made up of sub-objects, can be stored in a Picture,

so that operations can be applied to them as a group:

default_focus.set(7, 5, -10, 7, 5, 10, 10);

Cuboid cO(origin, 5, 5, 5);

cO0.shift (0, 0, 3);

cO.draw();

Circle z0(cO.get_rectangle_center(0), 2.5, 90, 0, 0, 64);

Chapter 9: Pictures

z0.draw();
Circle z1(z0);
z1.shift (0, 0, -1);
z1l.draw();
int i;
int j = z0.get_size();
for (i = 0; i < 8; ++1i)
z0.get_point(i * j/8).draw(zl.get_point(i * j/8));

Cuboid c1(cO.get_rectangle_center(4), 5, 3, 3);
cl.shift(0, 2.5);
cl.draw();
Rectangle r0 = *cl.get_rectangle_ptr(3);
Point p[10];
for (i = 0; i < 4; ++i)

pli]l = r0.get_point(i);
pl4] = r0.get_mid_point(0);
p[5] = r0.get_mid_point(2);
pl6] = pl4] .mediate(p[5], 2/3.0);
Circle z2(p[6], 2, 90, 90, 0, 16);
z2.draw();
Circle z3 = z2;
z3.shift(3);
z3.draw();
j = z2.get_size();
for (i = 0; 1 < 8; ++1)

z2.get_point(i * j/8).draw(z3.get_point(i * j/8));

pl7] = cO.get_rectangle_center(2);
pl7].shift(-4);
pl8] = cO.get_rectangle_center(3);
p[8].shift(4);
current_picture.output();
current_picture.rotate(45, 45);
current_picture.shift (10, 0, 3);
current_picture.output();

Chapter 9: Pictures o7

Figure 52.

Let’s say the complex object in Fig. 52 represents a furnace. From the point of view
of 3DLDF, however, it’s not an object at all, and the drawing consists of a collection of
unrelated Cuboids, Circles, Rectangles, and Paths. If we hadn’t put it into a Picture,
we could still have rotated and shifted it, but only by applying the operations to each of
the sub-objects individually.

One consequence of the way Pictures are output in 3DLDF is, that the following code
will not work:

beginfig(1l);

Point p(1, 2);

Point q(1, 3);

out_stream << "pickup pencircle scaled .5mm;" << endl;
origin.draw(p);

out_stream << "pickup pensquare xscaled .3mm rotated 30;" << endl;
origin.draw(q);

current_picture.output();

endfig();

This is the MetaPost code that results:

beginfig(1l);
pickup pencircle scaled .5mm;
pickup pensquare xscaled .3mm rotated 30;

Chapter 9: Pictures 58

draw (0.000000cm, -3.000000cm) -- (1.000000cm, -1.000000cm) ;

draw (0.000000cm, -3.000000cm) -- (1.000000cm, 0.000000cm) ;

endfig;

It’s perfectly legitimate to write raw MetaPost code to out_stream, as in lines 4 and

6 of this example. However, the draw() commands do not cause any output to out_
stream. The MetaPost drawing commands are written to out_stream when current_
picture.output() is called. Therefore, the pickup commands are “bunched up” before
the drawing commands. In this example, setting currentpen to pencircle scaled .5mm
has no effect, because it is immediately reset to pensquare xscaled .3mm rotated 30 in
the MetaPost code, before the draw commands. It is not possible to change currentpen in
this way within a Picture. Since the draw() commands in the 3DLDF code didn’t specify
a pen argument, currentpen with its final value is used for both of the MetaPost draw
commands. For any given invocation of Picture: :output (), there can only be one value
of currentpen. All other pens must be passed as arguments to the drawing commands.

9.1 Projections

In order for a 3D graphic program to be useful, it must be able to make two-dimensional
projections of its three-dimensional constructions so that they can be displayed on computer
screens and printed out. These are some of the possible projections:

e Parallel projection onto one of the major planes
These projections are trivial, and can be performed by 3DLDF. They are dis-
cussed in the following section.

e Parallel projection onto another plane
I haven’t programmed these projections yet, but they might be useful, so I
probably will, when I get around to it.

e The perspective projection
This is the projection most people think of, when they think of 3D-graphics. It
is discussed in detail in Section 9.1.2 [The Perspective Projection], page 60.

e The isometric and axonometric projections
These projections are important for engineering and drafting. I have not yet
implemented them in 3DLDF, but they are on my list of “Things To Do”.

The function Picture: :output() takes a const unsigned short argument specifying
the projection to be used. The user should probably avoid using explicit unsigned shorts,
but should use the constants defined for this purpose in the namespace Projections.! The
constants are PERSP, PARALLEL_X_Y, PARALLEL_X_Z, PARALLEL_Z_Y, AXON, and IS0. The
latter two should not be used, because the axonometric and isometric projections have not
yet been implemented.

9.1.1 Parallel Projections

When a Picture is projected onto the x-y plane, the x and y-values from the world_
coordinates of the Points belonging to the objects on the Picture are copied to their

! Namespaces are described in Stroustrup, The C++ Programming Language, Chapter 8.

Chapter 9: Pictures 59

projective_coordinates, which are used in the MetaPost code written to out_stream.
If a Picture p contains an object in the x-y plane, or in a plane parallel to the x-y plane,
then the result of p.output(Projections::PARALLEL_X_Y) is more-or-less equivalent to
just using MetaPost without 3DLDF.

Rectangle r(origin, 3, 3, 90);

Circle c(origin, 3, 90);

c *= r.shift(0, 0, 5);

r.draw();

c.draw();

current_picture.output(Projections: :PARALLEL_X_Y);

O
b 4

Figure 53.

If the objects do not lie in the x-y plane, or a plane parallel to the x-y plane, then the
projection will be distorted:

current_picture.output(Projections: :PARALLEL_X_Y);

A
\ J

Figure 54.

Picture: :output () can be called with an additional real argument factor for magni-
fying or shrinking the Picture.

Rectangle r(origin, 4, 4, 90, 60);

Circle c(origin, 4, 90, 60);

c *= r.shift(0, 0, 5);

r.filldraw(black, gray);

c.unfilldraw(black);
current_picture.output(Projections: :PARALLEL X Y, .5);
current_picture.shift(2.5);
current_picture.output(Projections: :PARALLEL_X_Y);

Chapter 9: Pictures 60

current_picture.shift(1);
current_picture.output(Projections: :PARALLEL_X_Y, 2);

NalA

.HX Normal size

v \/

Figure 55.

Parallel projection onto the x-z and z-y planes are completely analogous to parallel
projection onto the x-y plane.

9.1.2 The Perspective Projection

The perspective projection obeys the laws of linear perspective. In 3DLDF, it is performed
by means of a transformation, whose effect is, to the best of my knowledge, exactly equiv-
alent to the result of a perspective projection done by hand using vanishing points and
rulers.

It is very helpful to the artist to understand the laws of linear perspective, and to know
how to make a perspective drawing by hand.? However, it is a very tedious and error-prone
procedure (I know, I've done it). One of my main motivations for writing 3DLDF was so I
wouldn’t have to do it anymore.

Fig. 56 shows a perspective construction, the way it could be done by hand. The point
of view, or focus is located 6cm from the picture plane, and 4cm above the ground (or x-z)
plane at the point (0, 4, -6). The rectangle R lies in the ground plane, with the point 7
at (2, 0, 1.5). The right side of R, with length = 2cm lies at an angle of 40 to the ground
line, which corresponds to the intersection line of the ground plane with the picture plane,
and the left side, with length = 5cm, at an angle of 90° — 40° = 50° to the ground line.

2 There are many books on linear perspective for artists. I've found Gwen White’s Perspective. A Guide
for Artists, Architects and Designers to be particularly good. Vredeman de Vries, Perspective contains
beautiful examples of perspective constructions.

Chapter 9: Pictures 61

MP-CV

VP 50°1 MP 40°r cv MP 50°1 VP 40°r)
- S : 4 ‘ - horizon

-

ground line_

center of vision

vanishing point

measuring point
left

right

Figure 56.

While it’s possible to use 3SDLDF to make a perspective construction in the traditional
way, as Fig. 56 shows, the code for Fig. 57 achieves the same result more efficiently:

default_focus.set(0, 4, -6, 0, 4, 6, 6);
Rectangle r(origin, 2, 5, 0, 40);

Point p(2, 0, 1.5);

r.shift(p - r.get_point(0));

r.draw();

T2
3

T1

Figure 57.

In Fig. 56, it was convenient to start with the corner point rg; if we needed the center of
R, it would have to be found from the corner points. However, in 3DLDF, Rectangles are
most often constructed about the center. Therefore, in Fig. 58, R is first constructed about
the origin, with the rotation about the y-axis passed as an argument to the constructor.
It is then shifted such that *(R.points[0]), the first (or zeroth, if you will) Point on R
comes to lie at (2,0, 1.5).

Unlike the other transformations currently used in 3DLDF, the perspective transfor-
mation is non-affine. Affine transformations maintain parallelity of lines, while the rules of

Chapter 9: Pictures 62

perspective state that parallel lines, with one exception, appear to recede toward a vanishing
point.3

In Fig. 56, the lines 7or; and 7575 appear to vanish toward the right-hand 40° vanishing
point, while 7g73 and 775 appear to vanish toward the left-hand 50° vanishing point. The
lower the angle of a vanishing point, the further away it is from the center of vision, as
Fig. 58 shows:

VP 80° VP
o |

60°
VP 70° J VP 50° VP 40° VP 30° VP 20°

horizon

__-+» VP 10° (x = 28.3564cm)

_-» VP 5° (2 = 57.1503cm)

- B ground line

L=IIITToIITIII o > VP 0.5° (z = 572.943cm)

Figure 58.

In Fig. 58, the 0.5° vanishing point is nearly 5% meters away from the CV, and a line
receding to it will be very nearly horizontal. However, the distance from the focus to the
CV is only 5cm. As this distance increases, the distance from the CV to a given vanishing
point increases proportionately. If the distance is 30cm, a more reasonable value for a
drawing, then the x-coordinate of VP 10° is 170.138 cm, that of VP 5° is 342.902 cm, and
that of VP 0.5° is 3437.66 cm! This is the reason why perspective drawings done by hand
rarely contain lines receding to the horizon at low angles.

This problem doesn’t arise when the perspective transformation is used. In this case,
any angle can be calculated as easily as any other:

default_focus.set(0, 4, -6, 0, 4, 6, 6);
Rectangle r;

Point center(0, 2);

r.set(center, 2, 5, 0, 0, 0.5);
r.draw();

r.set(center, 2, 5, 0, 0, 2.5);

3 (I believe the following to be correct, but I'm not entirely sure.) Let @ be the line of sight. By definition,
the plane of projection will be a plane p, such that ¥ is normal to p. Let gg and ¢; be planes such that
go =q1 or qo || g1, and go L p. It follows that g1 L p. Let lgp and [be lines, such that lg # 1, lg || 11,
lo € 90,11 € q1, 1o L ¥, and I3 L ¥. Under these circumstances, the projections of [y and 7 in p will also
be parallel.

Chapter 9: Pictures 63

r.draw();

r.set(center, 2, 5, 0, 0, 5);
r.draw();
current_picture.output();

0.5°

Figure 59.
9.2 Focuses

The perspective transformation requires a focus; as a consequence, outputting a Picture
requires an object of class Focus. Picture: :output () takes an optional pointer-to-Focus
argument, which is 0 by default. If the default is used, (or 0 is passed explicitly), the global
variable default_focus is used. See Section 23.2 [Focus Reference; Global Variables,
page 152.

A Focus can be thought of as the observer of a scene, or a camera. It contains a
Point position for its location with respect to 3DLDF’s coordinate system, and a Point
direction, specifying the direction where the observer is looking, or where the camera is
pointed. The Focus can be rotated freely about the line ITD>, where P stands for position
and D for direction, so a Focus contains a third Point up, to indicate which direction
will be “up” on the projection, when a Picture is projected.

The projection plane ¢ will always be perpendicular to ITD>, or to put it another way,
PD is normal to q.

Unlike the traditional perspective construction, where the distance from the focus to the
center of vision fixes both the location of the focus in space, and its distance to the picture
plane,* these two parameters can be set independently when the perspective transformation
is used. The distance from a Focus to the picture plane is stored in the data member
distance, of type real.

A Focus can be declared using two Point arguments for position and direction, and
a real argument for distance, in that order.
Point pos(0, 5, -10);
Point dir(0, 5, 10);
Focus f(pos, dir, 10);

Point center(2, 0, 3);
Rectangle r(center, 3, 3);

4 T believe this to be true, but I'm not 100\% certain.

Chapter 9: Pictures 64

r.draw();
current_picture.output (£);

Figure 60.

The “up” direction is calculated by the Focus constructor automatically. An optional

argument can be used to specify the angle by which to rotate the Focus about PD.

Point pos(0, 5, -10);

Point dir(0, 5, 10);

Focus f(pos, dir, 10, 30);

Point center(2, 0, 3);

Rectangle r(center, 3, 3);

r.draw();

current_picture.output(f);

Figure 61.

Alternatively, a Focus can be declared using three real arguments each for the x, y, and
z-coordinates of position and direction, respectively, followed by the real arguments for
distance and the angle of rotation:

Focus £(3, 5, -5, 0, 3, 0, 10, 10);
Point center(2, 0, 3);

Chapter 9: Pictures 65

Rectangle r(center, 3, 3);
r.draw();
current_picture.output (£);

Figure 62.

Focuses contain two Transforms, transform and persp. A Focus can be located any-
where in 3DLDF’s coordinate system. However, performing the perspective projection is
more convenient, if position and direction both lie on one of the major axes, and the
plane of projection corresponds to one of the major planes. transform is the transforma-
tion which would have this affect on the Focus, and is calculated by the Focus constructor.
When a Picture is output using that Focus, transform is applied to all of the Shapes on
the Picture, maintaining the relationship between the Focus and the Shapes, while making
it easier to calculate the projection. The Focus need never be transformed by transform.
The actual perspective transformation is stored in persp.

Focuses can be moved by using one of the setting functions, which take the same ar-
guments as the constructors. Currently, there are no affine transformation functions for
moving Focuses, but I plan to add them soon. If 3DLDF is used for making animation,
resetting the Focus can be used to simulate camera movements:

beginfig(1l);

Point pos(2, 10, 3);

Point dir(2, -10, 3);

Focus f;

Point center(2, 0, 3);

for (int 1 = 0; i < 5; ++i)

{

f.set(pos, dir, 10, (15 * i));
Rectangle r(center, 3, 3);
r.draw();
current_picture.output(f);
current_picture.clear();
pos.shift(1, 1, 0);

Chapter 9: Pictures 66

dir.rotate(0, 0, 10);
}
endfig(1);

[\

Figure 63.

In Fig. 63, current_picture is output 5 times within a single MetaPost figure. Since
the file passed to MetaPost is called ‘persp.mp’, the file of Encapsulated PostScript (EPS)
code containing Fig. 63 is called ‘persp.1’. To use this technique for making an animation,
it’s necessary to output the Picture into multiple MetaPost figures.

Point pos(2, 10, 3);
Point dir(2, -10, 3);
Focus f;
Point center(2, 0, 3);
for (dnt i = 0; i < 5; ++i)
{
f.set(pos, dir, 10, (15 * i));
Rectangle r(center, 3, 3);
r.draw();
beginfig(i+1);
current_picture.output(f);
endfig();
current_picture.clear();
pos.shift(1, 1, 0);
dir.rotate(0, 0, 10);
}

Now, running MetaPost on ‘persp.mp’ generates the EPS files ‘persp.1’, ‘persp.2’,
‘persp.3’, ‘persp.4’, and ‘persp.5’, containing the five separate drawings of r.

Chapter 9: Pictures 67

9.3 Surface Hiding

In Fig. 64, Circle c lies in front of Rectangle r. Since c is drawn and not filled, r is visible

behind c.

default_focus.set(1, 3, -5, 0, 3, 5, 10);
Point p(0, -2, 5);

Rectangle r(p, 3, 4, 90);

r.draw();

Point q(2, -2, 3);

Circle c(q, 3, 90);

c.draw();

current_picture.output();

Figure 64.

If instead, c is filled or filldrawn, only the parts of r that are not covered by ¢ should be
visible:

r.draw();
c.filldraw();

Chapter 9: Pictures 68

Figure 65.

What parts of r are covered depend on the point of view, i.e., the position and direction
of the Focus used for outputting the Picture:

default_focus.set(8, 0, -5, 5, 3, 5, 10);

Figure 66.

Determining what objects cover other objects in a program for 3D graphics is called
surface hiding, and is performed by a hidden surface algorithm. 3DLDF currently has a
very primitive hidden surface algorithm that only works for the most simple cases.

The hidden surface algorithm used in 3DLDF is a painter’s algorithm, which means that
the objects that are furthest away from the Focus are drawn first, followed by the objects
that are closer, which may thereby cover them. In order to make this possible, the Shapes
on a Picture must be sorted before they are output. They are sorted according to the
z-values in the projective_coordinates of the Points belonging to the Shape. This may
seem strange, since the projection is two-dimensional and only the x and y-values from
projective_coordinates are written to out_stream. However, the perspective transfor-
mation also produces a z-coordinate, which indicates the distance of the Points from the
Focus in the z-dimension.

The problem is, that all Shapes, except Points themselves, consist of multiple Points,
that may have different z-coordinates. 3DLDF currently does not yet have a satisfactory

Chapter 9: Pictures 69

way of dealing with this situtation. In order to try to cope with it, the user can specify
four different ways of sorting the Shapes: They can be sorted according to the maxi-
mum z-coordinate, the minimum z-coordinate, the mean of the maximum and minimum
z-coordinate (max + min)/2, and not sorted. In the last case, the Shapes are output in
the order of the drawing and filling commands in the user code. The z-coordinates referred
to are those in projective_coordinates, and will have been calculated for a particular
Focus.

The function Picture: :output() takes a const unsigned short sort_value argument
that specifies which style of sorting should be used. The namespace Sorting contains
the following constants which should be used for sort_value: MAX_Z, MIN_Z, MEAN_Z, and
NO_SORT. The default is MAX_Z.

3DLDEF’s primitive hidden surface algorithm cannot work for objects that intersect. The
following examples demonstrate why not:

using namespace Sorting;

using namespace Colors;

using namespace Projections;

default_focus.set(5, 3, -10, 3, 1, 1, 10, 180);
Rectangle rO(origin, 3, 4, 45);

Rectangle ri(origin, 2, 6, -45);

r0.draw();

rl.draw();

current_picture.output(default_focus, PERSP, 1, MAX_Z);
r0.show("r0:");

- r0:

fill_draw_value ==

(-1.5, -1.41421, -1.41421) -- (1.5, -1.41421, -1.41421) --
(1.5, 1.41421, 1.41421) —- (-1.5, 1.41421, 1.41421)

-- cycle;

r0.show("r0:", ’p’);

- r0:

fill_draw_value ==

Perspective coordinates.

(-5.05646, -4.59333, -0.040577) -- (-2.10249, -4.86501, -0.102123) --
(-1.18226, -1.33752, 0.156559) -- (-3.51276, -1.2796, 0.193084)

—-- cycle;

rl.show("ri:");

- ri:

fill_draw_value ==

(-1, 2.12132, -2.12132) -- (1, 2.12132, -2.12132) -
(1, -2.12132, 2.12132) -- (-1, -2.12132, 2.12132)

-- cycle;

rl.show("r1:", ’p’);
- ri:

Chapter 9: Pictures 70

fill draw_value ==

Perspective coordinates.

(-5.09222, -0.995681, -0.133156) -- (-2.98342, -1.03775, -0.181037) --
(-1.39791, -4.05125, 0.208945) -- (-2.87319, -3.93975, 0.230717)

-- cycle;

y
T1
-2.12132 -2.12132
4142 1.41421
N
2.12132 2.12132
-1.41421
ro -1.41421
Figure 67.

In Fig. 67, the Rectangles 1, and r; intersect along the x-axis. The z-values of the
world_coordinates of ry are -1.41421 and 1.41421 (two Points each), while those of r; are
2.12132 and -2.12132. So r; has two Points with z-coordinates greater than the z-coordinate
of any Point on ry, and two Points with z-coordinates less than the z-coordinate of any
Point on 7. The Points on rq and r; all have different z-values in their projective_
coordinates, but r; still has a Point with a z-coordinate greater than that of any of the
Points on rgy, and one with a z-coordinate less than that of any of the Points on 7.

In Fig. 68, the Shapes on current_picture are sorted according to the maximum z-
values of the projective_coordinates of the Points belonging to the Shapes. r; is
filled and drawn first, because it has the Point with the positive z-coordinate of greatest
magnitude. When subsequently rq is drawn, it covers part of the top of 1, which lies in
front of ry, and should be visible:

current_picture.output(default_focus, PERSP, 1, MAX_Z);

Chapter 9: Pictures 71

71

To

Figure 68.

In Fig. 69, the Shapes on current_picture are sorted according to the minimum z-
values of the projective_coordinates of the Points belonging to the Shapes. r1l is
drawn and filled last, because it has the Point with the negative z-coordinate of greatest

magnitude. It thereby covers the bottom part of r0, which lies in front of r1, and should
be visible.

current_picture.output(default_focus, PERSP, 1, MIN_Z);

T1

To

Figure 69.

Neither sorting by the mean z-value in the projective_coordinates, nor suppressing
sorting does any good. In each case, one Rectangle is always drawn and filled last, covering
parts of the other that lie in front of the first.

3DLDEF’s hidden surface algorithm will fail wherever objects intersect, not just where
one extends past the other in both the positive and negative z-directions.

Rectangle r(origin, 3, 4, 45);

Circle c(origin, 2, -45);

r.filldraw();

c.filldraw(black, gray);
current_picture.output(default_focus, PERSP, 1, NO_SORT);

Chapter 9: Pictures 72

Figure 70.

Even where objects don’t intersect, their projections may. In order to handle these cases
properly, it is necessary to break up the Shapes on a Picture into smaller Shapes, until
there are none that intersect or whose projections intersect. Then, any of the three methods
of sorting described above can be used to sort the Shapes, and they can be output.

Before this can be done, 3DLDF must be able to find the intersections of all of the
different kinds of Shapes. If 3DLDF converted solids to polyhedra and curves to sequences
of line segments, this would reduce to the problem of finding the intersections of lines and
planes, however it does not yet do this.

Even if it did, a fully functional hidden surface algorithm must compare each Shape on
a Picture with every other Shape. Therefore, for n Shapes, there will be n!/(n —r)!r!
(possibly time-consuming) comparisons. The following table shows how many comparisons
are needed for n Shapes for several values of n:

Shapes Comparisons
10 45

100 4950
1000 499,500
10,000 49,995,000
100,000 4.99995 x 10°

Figure 71.

Clearly, such a hidden surface algorithm would considerably increase run-time.

Currently, all of the Shapes on a Picture are output, as long as they lie completely within
the boundaries passed as arguments to Picture::output(). See Section 21.8 [Pictures;
Outputting], page 114. It would be more efficient to suppress output for them, if they
are completely covered by other objects. This also requires comparisions, and could be
implemented together with a fully-functional hidden surface algorithm.

Shadows, reflections, highlights and shading are all effects requiring comparing each
Shape with every other Shape, and could greatly increase run-time.

Chapter 10: Intersections 73

10 Intersections

There are no functions for finding the intersection points of two (or more) arbitrary Paths.
This is impossible, so long as 3SDLDF outputs MetaPost code. 3DLDF only “knows” about
the Points on a Path; it doesn’t actually generate the curve or other figure that passes
through the Points, and consequently doesn’t “know” how it does this.

In addition, an arbitrary Path can contain connectors. In 3DLDF, the connectors are
merely strings and are written verbatim to the output file, however, in MetaPost they
influence the form of a Path.

3DLDF can, however, find the intersection points of some non-arbitrary Paths. So far,
it can find the intersection point of the following combinations of Paths:

1. Two linear Paths, i.e., Paths for which Path::is_linear() returns true (see Sec-
tion 26.15 [Path Reference; Querying], page 194). In addition, the static Point
member function Point::intersection_points() can be called with four Point ar-
guments. The first and second arguments are treated as the end points of one line, and
the third and fourth arguments as the end points of the other.

2. A line and a Polygon. Currently, Reg_Polygon and Rectangle are the only classes
derived from Polygon.

3. Two Polygons.

4. A line and a Regular Closed Plane Curve (Reg_Cl_Plane_Curve, see Section 30.3
[Regular Closed Plane Curve Reference; Intersections|, page 217). Currently, E1lipse
and Circle are the only classes derived from Reg_Cl_Plane_Curve.

5. Two Ellipses. Since a Circle is also an Ellipse, one or both of the E1lipses may
be a Circle. See Section 31.9 [Ellipse Reference; Intersections], page 230.

Adding more functions for finding the intersections of various geometric figures is one of
my main priorities with respect to extending 3DLDF.

There are currently no special functions for finding the intersection points of a line
and a Circle or two Circles. Since the class Circle is derived from class Ellipse,
Circle::intersection_points() resolves to Ellipse: :intersection_points(), which,
in turn, calls Reg_Cl_Plane_Curve::intersection_points(). This does the trick, but
it’s much easier to find the intersections for Circles that it is for E1lipses. In particular,
the intersections of two coplanar Circles can be found algebraically, whereas I've had to
implement a numerical solution for the case of two coplanar E11ipses with different centers
and /or axis orientation. It may also be worthwhile to write a specialization for finding the
intersection points of a Circle and an Ellipse.

The theory of intersections is a fascinating and non-trivial branch of mathematics.! As
I learn more about it, I plan to define more classes to represent various curves (two-
dimensional ones to start with) and functions for finding their intersection points.

! The books on computer graphics and the fairly elementary mathematics books that I own or have referred
to don’t go into intersections very deeply. One that does is Fischer, Gerd. Ebene Algebraische Kurven,
which is a bit over my head.

Chapter 11: Installing and Running 3DLDF 74

11 Installing and Running 3DLDF

11.1 Installing 3DLDF

3DLDF is available for downloading from http://ftp.gnu.org/gnu/3dldf. The
official 3DLDF website is http://www.gnu.org/software/3dldf. The “tarball”, i.e.,
the compressed archive file ‘3DLDF-1.1.5.1.tar.gz’ unpacks into a directory called
‘/3DLDF-1.1.5.1/".

On a typical Unix-like system, entering the following commands at the command line
in a shell will unpack the 3DLDF distribution. Please note that the form of the commands
may differ on your system.

gunzip 3DLDF-1.1.5.1.tar.gz
tar xpvf 3DLDF-1.1.5.1.tar

The ‘p’ option to tar ensures that the files will have the same permissions as when they
were packed.

The directory ‘3DLDF-1.1.5.1/ contains a configure script, which should be called
from the command line in the shell, using the absolute path of ‘3DLDF-1.1.5.1/" as the pre-
fix argument. For example, if the path is ‘/usr/local/mydir/3DLDF-1.1.5.1/’ configure
should be invoked as follows:

cd 3DLDF-1.1.5.1
configure --prefix=/usr/local/mydir/3DLDF-1.1.5.1/

configure generates a ‘Makefile’ from the ‘Makefile.in’ in ‘3DLDF-1.1.5.1/7,
and in each of the subdirectories ‘3DLDF-1.1.5.1/CWEB’, ‘3DLDF-1.1.5.1/D0C’, and
‘3DLDF-1.1.5.1/DOC/TEXINFQ’. Now, make install causes the 3DLDF to be built. The
executable is called ‘3d1df’.

See the files ‘README’ and ‘INSTALL’ in the 3DLDF distribution for more information.

11.1.1 Template Functions

3DLDF 1.1.5 is the first release that contains template functions, namely template <class
C> C* create_new(), which is defined in ‘creatnew.web’, and template <class Real>
Real get_second_largest (), which is defined in gsltmplt.web. See Chapter 14 [Dynamic
Allocation of Shapes], page 84, and Section 15.3 [Get Second Largest Real], page 87.

In order for template functions to be instantiated correctly, their definitions must be
available in each compilation unit where specializations are declared or used. For non-
template functions, it suffices for their declarations to be available, and their definitions
are found at link-time. For this reason, the definitions of create_new() and get_second_
largest () are in their own CWEB files, and are written to their own header files. The
latter are included in the other CWEB files that need them.

In addition, ‘AM_CXXFLAGS = -frepo’ has been added to the file ‘Makefile.am’ in
‘3DLDF-1.1.5/CWEB/’, so that the C++ compiler is called using the ‘~frepo’ option. The
manual Using and Porting the GNU Compiler Collection explains this as follows:

Chapter 11: Installing and Running 3DLDF 75

“Compile your template-using code with ‘~frepo’. The compiler will generate
files with the extension ‘.rpo’ listing all of the template instantiations used
in the corresponding object files which could be instantiated there; the link
wrapper, ‘collect?2’, will then update the ‘. rpo’ files to tell the compiler where
to place those instantiations and rebuild any affected object files. The link-time
overhead is negligible after the first pass, as the compiler will continue to place
the instantiations in the same files.”?

The first time the executable ‘3d1df’ is built, the files that use the template functions
are recompiled one or more times, and the linker is also called several times. This doesn’t
happen anymore, once the ‘.rpo’ files exist.

Template instantiation differs from compiler to compiler, so using template functions
will tend to make 3DLDF less portable. I am no longer able to compile it on the DECalpha
Personal Workstation I had been using with the DEC C++ compiler. See Section 1.6 [Ports],
page 8, for more information.

11.2 Running 3DLDF

To use 3DLDF, call make run from the command line in the shell. The working directory
should be ‘3DLDF-1.1.5.1/’ or ‘3DLDF-1.1.5.1/CWEB’. Either will work, but the latter
may be more convenient, because this is the location of the CWEB, TEX and MetaPost
files that you’ll be editing. Alternatively, call 1dfr, which is merely a shell script that
calls make run. This takes care of running 3d1df, MetaPost, TEX, and dvips, producing a
PostScript file containing your drawings. You can display the latter on your terminal using
Ghostview or some other PostScript viewer, print it out, and whatever else you like to do
with PostScript files.

However, you can also perform the actions performed by make run by hand, by writing
your own shell scripts, by defining Emacs-Lisp commands, or in other ways. Even if you
choose to use make run, it’s important to understand what it does. The following explains
how to do this by hand.

The CWEB source files for 3DLDF are in the subdirectory ‘3DLDF-1.1.5.1/CWEB/’.
They must be ctangled, and the resulting C++ files must be compiled and linked, in
order to create the executable file ‘3d1df’. The C++ files and header files generated by
ctangle, the object files generated by the compiler, and the executable ‘3d1df’ all reside
in ‘3DLDF-1.1.5.1/CWEB/’. Therefore, the latter must be your working directory.

Since 3DLDF has no input routine as yet, as explained in Section 1.5.2 [No Input Rou-
tine], page 8, it is necessary to add C++ code to the function main() in ‘main.web’, and/or
in a separate function in another file. In the latter case, the function containing the user
code must be invoked in main(). Look for the line “Your code here!” in ‘main.web’.

This is an example of what you could write in main(). Feel free to make it more
complicated, if you wish.

beginfig(1l);
default_focus.set(2, 3, -10, 2, 3, 10, 20);
Rectangle R(origin, 5, 3);

! Stallman, Richard M. Using and Porting the GNU Compiler Collection, p. 285.

Chapter 11: Installing and Running 3DLDF 76

Circle C(origin, 3, 90);

C.half (180) .filldraw(black, light_gray);
R.filldraw();

C.half () .filldraw(black, light_gray);
Point p = C.get_point(4);

p-shift(0, -.5 * p.get_y());
p.label("C" , " " ;

Point q = R.get_mid_point(0);

q.shift(0, 0, -.5 * q.get_z());

q.label("R", "");
current_picture.output(default_focus, PERSP, 1, NO_SORT);
endfig(1);
C
R
Figure 72.

1. Save ‘main.web’, and any other CWEB files you've changed. Since these files have
changed, they must be ctangled, and the resulting C++ files must be recompiled. If
you’ve changed any files other than ‘main.web’, ctangle will also generate a header
file for each of these files. If a header file differs from the version that existed before
ctangle was run, all of the C++ files that depend on it must be recompiled. Then
‘3d1df’ must be relinked. To do this, call make 3d1df from the command line.

If you’ve made any errors in typing your code, the compiler should have issued error
messages, so go back into the appropriate CWEB file and correct your errors. Then
call make 3d1df again.

2. Call CWEB/3d1ldf at the command line. It writes a file of MetaPost code called
‘3DLDFput.mp’.

3. Run MetaPost on the file ‘3DLDFmp .mp’, which inputs ‘3DLDFput.mp’.
mpost 3DLDFput

The result is an Encapsulated PostScript file ‘3DLDFput . ’<integer> for each figure in
your drawing.

Chapter 11: Installing and Running 3DLDF 7

4. The file ‘3DLDFtex.tex’ should contain code for including the ‘3DLDFput . ’<integer>
files. This is an example taken from the ‘3DLDFtex.tex’ included in the distribution.
You may change it to suit your purposes.

\vbox to \vsize{\vskip 2cm

\line{\hskip 2cm Figure 1.\hss}}

\vfil

\line{\hskip 2cm\epsffile{3DLDFmp.1}\hss}’
\vss}

5. Run TEX on ‘3DLDFtex.tex’ to produce the DVI file, ‘3DLDFtex.dvi’.
tex 3DLDFtex

6. Run dvips on the DVI file to produce the PostScript file, ‘3DLDFtex.ps’.
dvips -o 3DLDFtex.ps 3DLDFtex

7. ‘3DLDFtex.ps’ can be viewed using Ghostview, it can be printed using 1pr (on a Unix-
like system), you can convert it to PDF with ps2pdf, or to some other format using
the appropriate program.

I sincerely hope that it worked. If it didn’t, ask your local computer wizard for help.

On the computer I'm using, I found that special arguments for setting landscape and
papersize in TEX files for DIN A3 landscape didn’t work. Ghostview cut off the right sides
of the drawings. Nor did it work to call dvips -t landscape -t a3. This caused an error
message which said that landscape would be ignored. When I called dvips with the ‘-t
landscape’ option alone, it worked, and Ghostview showed the entire drawing.

Another problem was Adobe Acrobat. It would display the entire DIN A3 page, but not
always in landscape format. I was unable to find a way of rotating the pages in Acrobat.
I finally found out, that if I included even a single letter of text in a label, Acrobat would
display the document correctly.

11.2.1 Converting EPS Files

ImageMagick (http://www.imagemagick.org) is a “collection of tools and libraries” for
image manipulation. It provides a ‘convert’ utility which can convert images from one for-
mat to another. It can convert structured PostScript (PS) to to Portable Network Graph-
ics (PNG) (http://www.libpng.org/pub/png/index.html), but not EPS (Encapsulated
PostScript) to PNG. Nor can it convert EPS to structured PostScript.

It is possible to have MetaPost generate structured PostScript directly by including
the command ‘prologues:=1;’ at the beginning of the MetaPost input. However, this
“generally doesn’t work when you use TEX fonts.”? This is a significant problem if your
labels contain math mode material, and you haven’t already taken steps to ensure that
appropriate fonts will be used in the PS output.

In the following, I describe the only way I've found to convert an EPS image to PNG
format while still using TEX fonts. There may be other and better ways of doing this, but
I haven’t found them.

2 Hobby, A User’s Manual for MetaPost, pp. 21-22.

Chapter 11: Installing and Running 3DLDF 78

1. Assume the EPS image is in the file ‘3DLDFmp .1’ Include the EPS image in a TEX file
which looks like this:

\advance\voffset by -1in
\advance\hoffset by -1in
\nopagenumbers

\input epsf

\epsfverbosetrue
\def\epsfsize#1#2{#1}
\setbox0=\vbox{\epsffile{3DLDFmp.1}}
\vsize=\htO

\hsize=\wdO
\special{papersize=\the\wd0,\the\ht0}
\box0

\bye

Do not name this file ‘3DLDFmp.1.tex’! While this worked fine for me on a DECalpha
Personal Workstation running under Tru64 Unix 5.1, with TEX, Version 3.1415 (C
version 6.1), and dvipsk 5.58f, it failed on a PC Pentium II XEON under Linux 2.4,
with TEX, Version 3.14159 (Web2C 7.4.5), and dvips(k) 5.92b, kpathsea version 3.4.5,
with the following error message:

“No BoundingBox comment found in file examples.1; using defaults”

The resulting PS image had the wrong size and the the graphic was positioned improp-
erly.

Apparently, it confuses the EPSF macros when the name of an included image is the
same as ‘\jobname’. So, for this example, let’s call it ‘3DLDFmp.1_.tex .

You don’t really need to call the macro ‘\epsfverbosetrue’. If you do, it will print
the measurements of the bounding box and other information to standard output.?

2. Run ‘tex 3DLDFmp.1_.tex .
3. Run ‘dvips -o 3DLDF.1.ps 3DLDFmp.1_.dvi’.
4. Run ‘convert 3DLDF.1.ps 3DLDFmp.1.png’.

ImageMagick supplies a ‘display’ utility, which can be used to display the PNG image:
display 3DLDFmp.1.png
It can be included in an HTML document as follows:

<img src="3DLDFmp.1.png"
alt="[Fig. 1]."

Please note! The PNG files for this manual are now called filename ‘3DLDF1.png’,
‘3DLDF2.png’, ..., ‘3DLDF199.png’, because I wasn’t able to write files with names like
‘3DLDFmp . <number>.png’ to a CD-R (Compact Disk, Recordable), when ‘number’ had more
than one digit.

3 Rokicki, Dvips: A DVI-to-PostScript Translator, p. 24.

Chapter 11: Installing and Running 3DLDF 79

11.2.1.1 Emacs-Lisp Functions

The file ‘3DLDF-1.1.5.1/CWEB/cnepspng.el’ contains definitions of two Emacs-Lisp
functions that can be used to convert Encapsulated PostScript (EPS) files to structured
PostScript (PS) and Portable Network Graphics (PNG) files.

convert-eps filename do-not-delete-files [Emacs-Lisp function]
Converts an EPS image file to the PS and PNG formats.

If called interactively, convert-eps prompts for the filename, including the extension,
of an EPS image file. It follows the procedure described above in Section 11.2.1
[Converting EPS Files], page 77, to create ‘filename.ps’ and ‘filename.png’.

If do-not-delete-files is nil, the ‘.tex’, ‘.dvi’, and ‘.log’ files will be deleted. This
is the case when convert-eps is called interactively with no prefix argument. If
convert-eps is called interactively with a prefix argument, or non-interactively with
a non-nil do-not-delete-files argument, these files will not be deleted.

convert-eps-loop arg start end [Emacs-Lisp function]
Converts a set of EPS image files to the PS and PNG formats. The files must all have
the same filename, and the extensions must form a range of positive integers. For ex-
ample, convert-eps-loop can be used to convert the files ‘3DLDFmp.1’, ‘3DLDFmp.2’,
and ‘3DLDFmp.3’ to ‘3DLDFmp.1.ps’, ‘3DLDFmp.2.ps’, and ‘3DLDFmp. 3.ps’ on the one
hand, and ‘3DLDFmp.1.png’, ‘3DLDFmp.2.png’, ‘3DLDFmp.3.png’ on the other.

If convert-eps-loop is called interactively, it prompts for filename with no extension
and the starting and ending numbers of the range.

For all i € Z and start < ¢ < end, convert-eps-loop checks whether a file named
‘filename.i’ exists. If it does, it calls convert-eps, passing ‘filename.i’ as the
latter’s filename argument.

do-not-delete-files is also passed to convert-eps. If it’s nil, the ‘.tex’, ‘.dvi’, and
‘.1log’ files will be deleted. This is the case when convert-eps-loop is called inter-
actively with no prefix argument. If convert-eps-loop is called interactively with
a prefix argument, or non-interactively with a non-nil do-not-delete-files argument,
these files will not be deleted.

11.2.2 Command Line Arguments

3d1df can be called with the following command line arguments.

--help Prints information about the valid command line options to standard output
and exits with return value 0.

--silent Suppresses some output to standard output and standard error when 3d1df is
run

--verbose
Causes status information to be printed to standard output when 3d1df is run.

--version
Prints the version number of 3DLDF to standard output and exits with return
value O.

Chapter 11: Installing and Running 3DLDF 80

Currently, 3d1df can only handle long options. ‘=’ cannot be substituted for ‘--’. How-
ever, the names of the options themselves can be abbreviated, as long as the abbreviation
is unambigous. For example, ‘3d1df --h’ and ‘3d1df --verb’ are valid, but ‘3d1df --ver’
is not.

Chapter 12: Typedefs and Utility Structures 81

12 Typedefs and Utility Structures

3DLDF defines a number of data types for various reasons, e.g., for the sake of convenience,
for use in conditional compilation, or as return values of functions. Some of these data
types can be defined using typedef, while others are defined as structs.

The typedefs and utility structures described in this chapter are found in ‘pspglb.web’.
Others, that contain objects of types defined in 3DLDF, are described in subsequent chap-
ters.

real [typedef]
Synonymous either with float or double, depending on the values of the prepro-
cessor variables LDF_REAL_FLOAT and LDF_REAL_DOUBLE. The meaning of real is
determined by means of conditional compilation. If real is float, 3DLDF will re-
quire less memory than if real is double, but its calculations will be less precise.
real is “typedeffed” to float by default.

real_pair first second [typedef]
Synonymous with pair<real, real>.

real_triple first second third [struct]
All three data elements of real_triple are reals. It also has two constructors,
described below. There are no other member functions.

void real_triple (void) [Constructor]
void real_triple (real a, real b, real c) [Constructor]
The constructor taking no arguments sets first, second, and third to 0. The
constructor taking three real arguments sets first to a, second to b, and third to

c.
Matrix [typedef]
A Matrix is a 4 x 4 array of real, e.g., Matrix M; = real M[4][4]. It is used in

class Transfornm for storing transformation matrices. See Chapter 4 [Transforms],
page 19, and See Chapter 19 [Transform Reference], page 96, for more information.

real_short first second [typedef]
Synonymous with pair<real, signed short>. It is the return type of Plane: :get_
distance().

bool_pair first second [typedef]

Synonymous with pair<bool, bool>.

bool_real first second [typedef]
Synonymous with pair<bool, real>.

Chapter 13: Global Constants and Variables 82

13 Global Constants and Variables

The global constants and variables described in this chapter are found in ‘pspglb.web’.
Others, of types defined in 3DLDF, are described in subsequent chapters.

bool ldf_real_float [Constants]
bool ldf_real_double
Set to 0 or 1 to match the values of the preprocessor macros LDF_REAL_FLOAT and
LDF_REAL_DOUBLE. The latter are used for conditional compilation and determine
whether real is “typedeffed” to float or double, i.e., whether real is made to be a
synonym of float or double using typedef.

1df_real_float and 1df _real_double can be used to control conditional expressions
in non-conditionally compiled code.

real PI [Constant]
The value of PI (7) is calculated as 4.0 x arctan(1.0). I believe that a preprocessor
macro “PI” was available when I compiled 3DLDF using the DEC C++ compiler, and
that it wasn’t, when I used GNU CC under Linux, but I'm no longer sure.

valarray <real> null_coordinates [Variable]
Contains four elements, all 0. Used for resetting the sets of coordinates belonging to
Points, but only when the DEC C++ compiler is used. This doesn’t work when GCC
is used.

real INVALID_REAL [Constant]
Actually, INVALID_REAL is the largest possible real value (i.e., float or double) on
a given machine. So, from the point of view of the compiler, it’s not invalid at all.
However, 3DLDF uses it to indicate failure of some kind. For example, the return
value of a function returning real can be compared with INVALID_REAL to check
whether the function succeeded or failed.

An alternative approach would be to use the exception handling facilities of C++. 1
do use these, but only in a couple of places, so far.

real_pair INVALID_REAL_PAIR [Constant]
first and second are both INVALID_REAL.

real INVALID_REAL_SHORT [Constant]
first is INVALID_REAL and second is 0.

real MAX_REAL [Variable]
The largest real value permitted in the the elements of Transforms and the coor-
dinates of Points. It is the second largest real value (i.e., float or double) on a
given machine (INVALID_REAL is the largest).

MAX_REAL is a variable, but it should be used like a constant. In other words, users
should never reset its value. It can’t be declared const because its value must be
calculated using function calls, which can’t be done before the entry point of the
program, i.e., main(). Therefore, the value of MAX_REAL is calculated at the beginning
of main().

Chapter 13: Global Constants and Variables 83

real MAX_REAL_SQRT [Variable]
The square root of MAX_REAL.

MAX_REAL_SQRT is a variable, but it should be used like a constant. In other words,
users should never reset its value. It can’t be declared const because its value is
calculated using the sqrt() function, which can’t be done before the entry point
of the program, i.e., main(). Therefore, the value of MAX_REAL_SQRT is set after
MAX_REAL is calculated, at the beginning of main().

MAX_REAL_SQRT is used in Point::magnitude() (see Section 22.15 [Vector
Operations|, page 136). The magnitude of a Point is found by using the formula
a2 +y?2+ 22z, y, and z are all tested against MAX_REAL_SQRT to ensure that x?2,
y?, and 22 will all be less than or equal to MAX_REAL before trying to calculate them.
Metafont implements an operation called Pythagorean addition, notated as “++”which
can be used to calculate distances without first squaring and then taking square
roots:! a++b = ,/a? + b? and a++b++c = (/a? + b2 + 2. This makes it possible
to calculate distances for greater values of a, b, and ¢, that would otherwise cause
floating point errors. Metafont also implements the inverse operation Pythagorean
subtraction, notated as ‘“+-+7: a+—+b = y/a? — b2. Unfortunately, 3DLDF

implements neither Pythagorean addition nor subtraction as yet, but it’s on my list
of “things to do”.

1 Knuth, Donald E. The Metafontbook, p- 66.

Chapter 14: Dynamic Allocation of Shapes 84

14 Dynamic Allocation of Shapes

template <class C> C* create_new (const C* arg) [Template function]

template <class C> C* create_new (const C& arg) [Template function]
These functions dynamically allocate an object derived from Shape on the free store,
returning a pointer to the type of the Shape and setting on_free_store to true.

If a non-zero pointer or a reference is passed to create_new(), the new object will
be a copy of arg.

It is not possible to instantiate more than one specialization of create_new() that
takes no argument, because calls to these functions would be ambiguous. If the new
object is not meant to be a copy of an existing one, ‘0’ must be passed to create_
new () as its argument.

create_new is called like this:

Point* p = create_new<Point>(0);
p—>show("*p:");
< *p: (0, 0, 0)

Color c(.3, .5, .25);

Color* d = create_new<Color>(c);
d->show("*d:");

_|

*d:

name ==
use_name ==
red_part ==
green_part = 5
blue_part == 0.25

N o o

.3
0.

Point a0(3, 2.5, 6);

Point a1(10, 11, 14);

Path q(a0, al);

Path* r = create_new<Path>(&q);
r->show("*r:");

_|

*T

points.size() ==
connectors.size() ==

(3, 2.5, 6) -- (10, 11, 14);

Specializations of this template function are currently declared for Color, Point,
Path, Reg_Polygon, Rectangle, Ellipse, Circle, Solid, and Cuboid.

Chapter 15: System Information 85

15 System Information

The functions described in this chapter are all declared in the namespace System. They
are for finding out information about the system on which 3DLDF is being run. They
are declared and defined in ‘pspglb.web’, except for the template function get_second_
largest (), which is declared and defined in ‘gsltmplt.web’.

There are two reasons for this. The first is that template definitions must be available in
the compilation units where specializations are instantiated. I therefore write the template
definition of get_second_largest() to ‘gsltmplt.h’; so it can be included by the CWEB
files that need it, currently ‘main.web’ only. If I wrote it to ‘pspglb.h’, it would be included
by all of the CWEB files except for ‘loader.web’, causing unnecessarily bloated object code.

The other reason is because of the way way 3DLDF is built using Automake and make. 1
originally tried to define get_second_largest() in ‘pspglb.web’ and wrote the definition
to ‘gsltmplt.cc’, which is no problem with CWEB. However, I was unable to express the
dependencies among the CWEB, C++, and object files in such a way that SDLDF was built
properly.

Therefore all template functions will be put into files either by themselves, or in small
groups.

15.1 Endianness

signed short get_endianness ([const bool verbose = false]) [Function]
Returns the following values:

0 if the processor is little-endian.
1 if the processor is big-endian.
-1 if the endianness cannot be determined.

It is called by is_little_endian() and is_big_endian().
If verbose is true, messages are printed to standard output.

This function has been adapted from Harbison, Samuel P., and Guy L. Steele Jr. C, A
Reference Manual, pp. 163-164. This book has the clearest explanation of endianness
that I've found so far.

This is the C++ code:

signed short
System: :get_endianness(const bool verbose)
{
union {
long Long;
char Char[sizeof(long)];
} u;
u.Long = 1;
if (u.Char[0] == 1)
{

if (verbose)

Chapter 15: System Information 86

cout << "Processor is little-endian."
<< endl << endl << flush;

return O;
}
else if (u.Char[sizeof(long) - 1] == 1)
{
if (verbose)
cout << "Processor is big-endian."
<< endl << endl << flush;
return 1;
X
else
{
cerr << "ERROR! In System::get_endianness():\n"
<< "Can’t determine endianness. Returning -1"
<< endl << endl << flush;
return -1;
+
3
bool is_big_endian ([const bool verbose = false]) [Function]

Returns true if the processor is big-endian, otherwise false. If verbose is true,
messages are printed to standard output.

bool is_little_endian ([const bool verbose = false]) [Function]
Returns true if the processor is little-endian, otherwise false. If verbose is true,
messages are printed to standard output.

15.2 Register Width

unsigned short get_register_width (void) [Function]
Returns the register width of the CPU of the system on which 3DLDF is being run.
This will normally be either 32 or 64 bits.
This is the C++ code:
return (sizeof (void*) * CHAR_BIT);
This assumes that an address will be the same size as the processor’s registers, and

that CHAR_BIT will be the number of bits in a byte. These are reasonable assumptions
that apply to all architectures I know about.

This function is called by is_32_bit() and is_64_bit ().

bool is_32_bit (void) [Function]
Returns true if the CPU of the system on which 3DLDF is being run has a register
width of 32 bits, otherwise false.

bool is_64_bit (void) [Function]
Returns true if the CPU of the system on which 3DLDF is being run has a register
width of 64 bits, otherwise false.

Chapter 15: System Information 87

15.3 Get Second Largest Real

template <class Real> Real get_second_largest (Real [Template function]
MAX_VAL, [bool verbose = false])

float get_second_largest (float, bool) [Template specialization]

double get_second_largest (double, bool) [Template specialization]

get_second_largest returns the second largest floating point number of the type
specified the template paramater Real. If verbose is true, messages are printed to
standard output.

This function is used for setting the value of MAX_REAL. See Chapter 13 [Global
Constants and Variables], page 82.

get_second_largest depends on there being an unsigned integer type with the same
length as Real. This should always be the case for float and double, but may not
be long double.

MAX_ VAL should be the largest number of type Real on a given architecture. The
GNU C++ compiler GCC 3.3 does not currently supply the numeric_limits template,
S0 it is necessary to pass one of the macros FLT_MAX or DBL_MAX explicitly, depending
on which specialization you use!. When and if GCC supplies the numeric_limits
template, I will eliminate the MAX_REAL argument.

Lgf your system supplies an unsigned integer type with the same length as long double, then
you can instantiate get_second_largest<long double>() and call ‘get_second_largest<long
double>(LDBL_MAX)’. However, I doubt that this amount of precision would be worthwhile. If it ever
were required, 3DLDF would have to be changed in other ways, too. In particular, it would have to use
more precise trigonometric functions for rotations. See Section 1.5.1 [Accuracy], page 7.

Chapter 16: Color Reference 88

16 Color Reference

Class Color is defined in ‘colors.web’.

16.1 Data Members

string name [Variable]
The name of the Color.

bool use_name [Variable]
If true, name is written to out_stream when the Color is used for drawing or filling.
Otherwise, the RGB (red-green-blue) values are written to out_stream.

bool on_free_store [Variable]
true, if the Color has been created by create_new<Color> (), which allocates mem-
ory for the Color on the free store. Otherwise false. Colors should only ever
be dynamically allocated by using create_new<Color>(). See Section 16.2 [Color
Reference;;Constructors and Setting Functions], page 88.

real red_part [Variable]
real green_part [Variable]
real blue_part [Variable]

The RGB (red-green-blue) values of the Color. A real value r is valid for these
variables if and only if 0 < r < 1.

16.2 Constructors and Setting Functions

void Color (void) [Default constructor]
Creates a Color and initializes its red_part, green_part, and blue_part to 0. use_
name and on_free_store are set to false.

void Color (const Color& c, [const stringn ="", [const [Copy constructor]
bool u = truel])
Creates a Color and makes it a copy of c. If n is not the empty string and u is true,
use_name is set to true. Otherwise, its set to false.

void Color (const string n, const unsigned short r, const [Constructor]
unsigned short g, const unsigned short b, [const bool u = true])
Creates a Color with name n. Its red_part, green_part, and blue_part are set to
r/255.0, ¢/255.0, and b/255.0, respectively. use_name is set to u.

void set (const string n, const unsigned short r, const [Setting function]
unsigned short g, const unsigned short b, [const bool u = false])
Corresponds to the constructor above, except that u is false by default.

void Color (const real r, const real g, const real b) [Constructor]
Creates an unnamed Color using the real values r, g, and b for its red_part, green_
part, and blue_part, respectively.

Chapter 16: Color Reference 89

void set (const real r, const real g, const real b) [Setting function]
Corresponds to the constructor above.

Color* create_new<Color> (const Color* c) [Template specializations]
Color* create_new<Color> (const Color& c)
Pseudo-constructors for dynamic allocation of Colors. They create a Color on the
free store and allocate memory for it using new(Color). They return a pointer to the
new Color.

If ¢ is a non-zero pointer or a reference, the new Color will be a copy of c. If the new
object is not meant to be a copy of an existing one, ‘0’ must be passed to create_
new<Color>() as its argument. See Chapter 14 [Dynamic Allocation of Shapes],
page 84, for more information.

This function is used in the drawing and filling functions for Path and Solid.
Point: :drawdot () should be changed to use it too, but I haven’t gotten around to
doing this yet.

16.3 Operators

void operator= (const Color& c) [Assignment operator]
Sets name to the empty string, use_name to false, and red_part, green_part, and
blue_part to c.red_part, c.green_part, and c.blue_part, respectively.

bool operator== (const Color& c) [const operator]
Equality operator. Returns true, if the red_parts, green_parts, and blue_parts of
*this and c are equal, otherwise false. The names and use_names are not compared.

bool operator!= (const Color& c) [const operator]
Inequality operator. Returns false, if the red_parts, green_parts, and blue_
parts of *this and c are equal, otherwise true. The names and use_names are not
compared.

ostream& operator<< (ostream& o, const Color& c) [Non-member function]
Output operator. Writes the MetaPost code for the Color to out_stream when a
Picture is output. This occurs when the Color has been used as an argument to
drawing or filling functions.

If use_name is true, name is written to out_stream. Otherwise, “(red_part, green_
part, blue_part)” is written to out_stream.

16.4 Modifying

void set_name (const string s) [Function]
Sets name to s. use_name is not reset.

void set_use_name (const bool b) [Function]
Sets use_name to b.

Chapter 16: Color Reference 90

void modify (const real r, [const real g = 0, [const real b = 0]]) [Function]
Adds r, g, and b to red_part, green_part, and blue_part, respectively. Following
the addition, if red_part, green_part, and/or blue_part is greater than 1, it is
reduced to 1. If it is less than 0, it is increased to 0.

void set_red_part (const real q) [Function]
void set_green_part (const real q) [Function]
void set_blue_part (const real q) [Function]

Let p stand for red_part, green_part, or blue_part, depending upon which function
isused. f 0<¢g<1,pissettoq. If <0, pisset to0. If ¢ > 1, p is set to 1.

16.5 Showing

void show ([string text = ""]) [const function]
Prints information about the Color to standard output. If text is not the empty
string, prints text on a line of its own. Otherwise, it prints “Color:”. Then it prints
name, use_name, red_part, green_part, and blue_part.

16.6 Querying

bool is_on_free_store (void) [const function]
Returns on_free_store. This will only be true, if the Color was created by create_
new<Color>(). See Section 16.2 [Color Reference; Constructors and Setting Func-
tions|, page 88.

real get_red_part ([bool decimal = false]) [Inline const function]

real get_green_part ([bool decimal = false]) [Inline const function]

real get_blue_part ([bool decimal = false]) [Inline const function]
These functions return the red_part, green_part, or blue_part of the Color, re-
spectively. If decimal is false (the default), the actual real value of the “part” is
returned. Otherwise, the corresponding whole number n such that 0 < n < 255 is
returned.

bool get_use_name (void) [const function]
Returns use_name.

string get_name (void) [Inline const function]
Returns name.

16.7 Defining and Initializing Colors

void define_color_mp () [const function]
Writes MetaPost code to out_stream, in order to define objects of type color within
MetaPost, and set their redparts, greenparts, and blueparts.

void initialize_colors (void) [Static function)]
Calls define_color_mp() (described above) for the Colors that are defined in
namespace Colors (see Section 16.8 [Namespace Colors|, page 91).

Chapter 16: Color Reference 91

16.8 Namespace Colors.

const Color red Constant
const Color green Constant
const Color blue Constant
const Color cyan Constant
const Color yellow Constant
const Color magenta Constant
const Color orange_red Constant
const Color violet_red Constant
const Color pink Constant

[]
[]
[]
[]
[]
[]
[]
=
const Color green_yellow [Constant]
[]
[]
[]
[]
[]
[]
[]
[]
[]

const Color orange Constant

const Color violet Constant

const Color purple Constant

const Color blue_violet Constant

const Color yellow_green Constant

const Color black Constant

const Color white Constant

const Color gray Constant

const Color light_gray Constant
These constant Colors can be used in drawing and filling commands.

const Color default_background [Constant]
The default background color. Equal to white per default.

const Color* background_color [Pointer]
Points to default_background by default.

const Color* default_color [Pointer]
Points to black by default.

const Color* help_color [Pointer]

Points to green by default.

The following vectors of pointers to Color can be used in the drawing and filling functions
for Solid (see Section 34.13 [Solid Reference; Drawing and Filling], page 255).

const vector <const Color*> default_color_vector [Vector]
Contains one pointer, namely default_color.

const vector <const Color*> help_color_vector [Vector]
Contains one pointer, namely help_color.

const vector <const Color*> background_color_vector [Vector]
Contains one pointer, namely background_color.

Chapter 17: Input and Output 92

17 Input and Output

17.1 Global Variables

ifstream in_stream [Variable]
Intended for inputting files of input code. However, 3DLDF does not currently
have a routine for reading input code. in_stream is currently attached to the file
‘ldfinput.ldf’ by initialize_io() (see Section 17.2 [I/O Functions|, page 92).
in_stream is read in character-by-character in main (), however this serves no useful
purpose as yet.

ofstream out_stream [Variable]
Used for writing the file of MetaPost code, which is 3DLDF’s output. Currently
attached to the file ‘subpersp.mp’ by initialize_io() (see Section 17.2 [I/O Func-
tions|, page 92).

ofstream tex_stream [Variable]
TEX code can be written to a file through tex_stream, if desired. 3DLDF makes
no use of it itself. Currently attached to ‘subpersp.tex’ by initialize_io() (see
Section 17.2 [I/O Functions], page 92).

17.2 1/0O Functions

void initialize_io (string in_stream_name, string out_stream_name, [Function]
string tex_stream_name, char* program_name)
Opens files with names specified by the first three arguments, and attaches them to
the file streams in_stream, out_stream, and tex_stream, respectively. Comments
are written at the beginning of the files, containing their names, a datestamp, and
the name of the program used to generate them.

void write_footers (void) [Function]
Writes code at the end of the files attached to in_stream, out_stream, and tex_
stream, before the streams are closed. Currently, they write comments containing
local variable lists for use in Emacs.

void beginfig (unsigned short i) [Inline function]
Writes “beginfig(i)” to out_stream.

void endfig ([unsigned short i = 0]) [Inline function]
Writes “endfig()” to out_stream. The argument i is “syntactic sugar”; it’s ignored
by endfig(), but may help the user keep track of what figure is being ended.

Chapter 18: Shape Reference 93

18 Shape Reference

Class Shape is defined in ‘shapes.web’.

Shape is an abstract class, which means that all of its member functions are pure virtual
functions, and that it’s only used as a base class, i.e., no objects of type Shape may be
declared.

All of the “drawable” types in 3DLDF, Point, Path, El1lipse, etc., are derived from
Shape.

Deriving all of the drawable types from Shape makes it possible to handle objects of
different types in the same way. This is especially important in the Picture functions,
where objects of various types (but all derived from Shape) are accessed through pointers
to Shape. See Chapter 21 [Picture Reference|, page 111.

18.1 Data Members

signed short DRAWDOT [Protected static constants]

signed short DRAW

signed short FILL

signed short FILLDRAW

signed short UNDRAWDOT

signed short UNDRAW

signed short UNFILL

signed short UNFILLDRAW
Values used in the output () functions of the classes derived from Shape. For example,
in Path, if the data member £i11_draw_value = DRAW, then the MetaPost command
draw is written to out_stream when that Path is output.

18.2 Operators
Transform operator*= (const Transform& t) [Pure virtual function]
18.3 Copying

Shape* get_copy (void) [const pure virtual function]
Copies an object, allocating memory on the free store for the copy, and returns a
pointer to Shape for accessing the copy.

Used in the drawing and filling functions for copying the Shape, and putting a pointer
to the copy onto the vector<Shape*> shapes of the Picture.

18.4 Modifying

bool set_on_free_store (bool b = true) [Pure virtual function]
Sets the data member on_free_store to b. All classes derived from Shape must
therefore also have a data member on_free_store.

Chapter 18: Shape Reference 94

This function is used in the template function create_new<type>. See Chapter 14
[Dynamic Allocation of Shapes], page 84, for more information.

18.5 Affine Transformations

Transform rotate (const real x, const real y, const [Pure virtual functions]
real z)
Transform scale (real x, real y, real z)
Transform shear (real xy, real xz, real yx, real yz, real zx, real zy)
Transform shift (real x, real y, real z)
Transform rotate (const Point& pO, const Point& p1, const real r)
See Section 22.12 [Point Reference; Affine Transformations|, page 130.

18.6 Applying Transformations

void apply_transform (void) [Pure virtual function]
Applies the Transform stored in the transform data member of the Points belonging
to the Shape to their world_coordinates. The transforms are subsequently reset
to the identity Transform.

18.7 Clearing

void clear (void) [Pure virtual function]
The precise definition of this function will depend on the nature of the derived class.
In general, it will call the destructor on dynamically allocated objects belonging to
the Shape, and deallocate the memory they occupied.

18.8 Querying

bool is_on_free_store (void) [const pure virtual function]
Returns true if the object was allocated on the free store, otherwise false.

18.9 Showing

void show ([string text = "", [char coords = ’w’, [const pure virtual function]
[const bool do_persp = true, [const bool do_apply = true, [Focus* f =0,
[const unsigned short proj = 0, [const real factor = 1]]]]]]])

Prints information about an object to standard output. See the descriptions of show ()
for the classes derived from Shape for more information.

Chapter 18: Shape Reference 95

18.10 Outputting

void output (void) [Pure virtual function]
Called by Picture: :output () for writing MetaPost code to out_stream for a Shape
pointed to by a pointer on the vector<Shape*> shapes belonging to the Picture.
Such a Shape will have been created by a drawing or filling function.

vector<Shape*> extract (const Focus& f, const [Pure virtual function]
unsigned short proj, real factor)

Called in Picture: :output(). It determines whether a Shape can be output. If it
can, and an output () function for the type of the Shape exists, a vector<Shape*>
containing a pointer to the Shape is returned.
On the other hand, it is possible to define a type derived from Shape, without an
output () function of its own, and not derived from a type that has one. It may
then consist of one or more objects of types that do have output () functions. In this
case, the vector<Shape*> returned by extract () will contain pointers to all of these
subsidiary Shapes, and Picture: :output () will treat them as independent objects.
In particular, if any one of them cannot be projected using the arguments passed to
Picture: :output (), this will have no effect on whether the others are outputted or
not.

Currently, there are no Shapes without an output () function, either belonging to
the class, or inherited. However, it’s useful to be able to define Shapes in this way,
so that they can be tested without having to define an output () function first.

bool set_extremes (void) [Pure virtual function]
Sets the values of projective_extremes for the Shape. This is needed in
Picture: :output () for determining the order in which objects are output.

real get_minimum_z (void) [const pure virtual functions]

real get_maximum_z (void)

real get_mean_z (void)
These functions return the minimum, maximum, and mean z-value respectively of
the projected Points belonging to the Shape, i.e., from projective_extremes. The
values for the Shapes on the Picture are used for determining the order in which
they are output

const valarray<real> get_extremes (void) [const pure virtual function]
Returns projective_extremes.

void suppress_output (void) [Pure virtual function]
Sets do_output to false. This function is called in Picture: :output(), if a Shape
on a Picture cannot be output using the arguments passed to Picture: :output ().

void unsuppress_output (void) [Pure virtual function]
Sets do_output to true. Called in Picture: :output() after output() is called
on the Shapes. This way, output of Shapes that couldn’t be output when
Picture: :output () was called with a particular set of arguments won’t necessarily
be suppressed when Picture: :output () is called again with different arguments.

Chapter 19: Transform Reference 96

19 Transform Reference

Class Transform is defined in ‘transfor.web’. Point is a friend of Transform.

19.1 Data Members

Matrix matrix [Private variable]
A 4 x 4 matrix of real representing the actual transformation matrix.

19.2 Global Variables and Constants

Transform user_transform [Variable]
Currently has no function. It is intended to be used for transforming the coordinates
of Points between the world coordinate system (WCS) and a user coordinate system
(UCS), when routines for managing user coordinate systems are implemented.

const Transform INVALID_TRANSFORM [Constant]
Every member of matrix in INVALID_TRANSFORM is equal to INVALID_REAL.

const Transform IDENTITY_TRANSFORM [Constant]

Homogeneous coordinates and Transforms are unchanged by multiplication with
IDENTITY_TRANSFORM. matrix is an identity matrix:

1 0 0 O
01 0 O
00 1 0
0 0 0 1
See Chapter 4 [Transforms], page 19.
19.3 Constructors
void Transform (void) [Default constructor]

Creates a Transform containing the identity matrix.

void Transform (real r) [Constructor]
Creates a Transform and sets all of the elements of matrix to r. Currently, this
constructor is never used, but who knows? Maybe someday it will be useful for
something.

void Transform (real r0_0, real r0_1, real r2, real r0_2, real [Constructor]
r0_3, real r1_0, real r1_1, real r1_2, real r1_3, real r2_0, real r2_1,
real r2_2, real r2_3, real r3_0, real r3_1, real r3_2, real r3_3)
Each of the sixteen real arguments is assigned to the corresponding element of ma-
trix: matrix[0] [0] = r0_0, matrix [0] [1] = r0_1, etc. Useful for specifying a trans-
formation matrix completely.

Chapter 19: Transform Reference 97

19.4 Operators

Transform operator= (const Transform& t) [Assignment operator]
Sets *this to t and returns t. Returning *this would, of course, have exactly the same
effect.

real operator*= (real r) [Operator]

Multiplication with assignment by a scalar. This operator multiplies each element E
of matrix by the scalar r. The return value is r. This makes it possible to chain

invocations of this function: For a,,b,,cp,...,p, ER, z €N

Transform TO(a_0, b_0, c_0, d4_0,
e 0, £.0, g_0, h_O,
i_0, j_O, k.01_0,
m_0, n_0, 0_0, p_0);

Transform Ti(a_1, b_1, c_1, d_1,
e_1, £.1, g_1, h_1,
i1, jo1, k111,
m 1, n_1, o_1, p_1);

Transform T2(a_2, b_2, c_2, d_2,
e,2, £.2, g 2, h_ 2,
i_2, j_2, k.21_2,
m 2, n_2, o2, p_2);

real r = 5;

Let My, M,, and M, stand for TO.matrix, T1.matrix, and T2.matrix respectively:

Qg by co do ay by ¢ dy

M, = ?0 fo g0 ho M, = ?1 f1 g h
) Jo ko o (41 o koL

mo Mg Oo Po my My 01 P1

a9 b2 Co d2
e h
M, = .2 f 2 }6{7:2 l 2
12 J2 2 2
mg M2 02 P2

TO *= T1 %= T2 *= r;

Now,
5&0 5b0 5C0 5d0 5&1 5b1 561 5d1
M. — 5eo 5fo Bgo Sho M, = S5e; 5f1 5g1 Shy
0 5i9 5jo bko 5lo ! 5, 5j1 bki 5l
5m0 5m0 500 5p0 5m1 5m1 501 5p1

5@2 5b2 562 5d2
e 5fa 592 5hy
5iy 5ja 5k 5l
5m2 5m2 502 5p2

M,

Chapter 19: Transform Reference 98

This function is not currently used anywhere, but it may turn out to be useful for
something.

Transform operator™® (const real r) [const operator]
Multiplication of a Transform by a scalar without assignment. The return value is
a Transform A. If this.matrix has elements Fp, then A.matrix has elements F4
such that £, = r x Er for all E.

Transform operator*= (const Transform& t) [Operator]
Performs matrix multiplication on matrix and t.matrix. The result is assigned to
matrix. tis returned, not *this! This makes it possible to chain invocations of this
function:

Transform a;
a.shift(1, 1, 1);
Transform b;
b.rotate(0, 90);
Transform c;
c.shear (5, 4);
Transform d;
d.scale(3, 4, 5);

Let a,,, b,,, and ¢,, stand for a.matrix, b.matrix, c.matrix, and d.matrix respec-

tively:
1 0 0 O 0.5 0.5 0.707 0
o 1 0 0 ho— 0.146 0.854 —-0.5 0
m=10 0 1 0 ™| —0.854 0.146 0.5 O
1 1 11 0 0 0 1
1 12 14 0 3 0 0 O
(10 1 15 0 4 — 0 4 00
=111 13 1 0 =10 0 5 0
0 0 0 1 0 0 0 1
a x=b *x=c *x=d;
a, b, and c are transformed by d, which remains unchanged.
Now,
3 0 00 1.5 2 354 0
[0 4 0 O _ —0.439 341 —-25 0
“m=10 0 5 0 ™ol —256 058 25 0
3 4 5 1 0 0 0 1
3 48 70 0
30 4 7 0
“m=133 52 5 0
0 0 0 1

d,, is unchanged.

Chapter 19: Transform Reference 99

Transform operator™® (const Transform t) [const operator]
Multiplication of a Transform by another Transform without assignment. The return
value is a Transform whose matrix contains values that are the result of the matrix
multiplication of matrix and t.matrix.

19.5 Matrix Inversion

Transform inverse (void) [const function]

Transform inverse ([bool assign = false]) [Function]
Returns a Transform T with a T.matrix that is the inverse of matrix. If assign =true,
then matrix is set to its inverse.

In the const version, matrix remains unchanged. The second should only ever be
called with true as its assign argument. If you're tempted call inverse(false), you
might as well just leave out the argument, which issues a warning message, and calls
the const version.

19.6 Setting Values

void set_element (const unsigned short row, const unsigned short [Function]
col, real r)
Sets the element of matrix indicated by the arguments to r.

Transform t;
t.set_element (0, 2, -3.45569);
t.show("t:");

4 t:
1 0 -3.46 0
0 1 0 0
0 0 1 0
0 0 0 1
19.7 Querying
bool is_identity (void) [Function]

Returns true if *this is the identity Transform, otherwise false. This function has
both a const and a non-const version. In the non-const version, clean() is called
on *this before comparing the elements of matrix with 1 (for the main diagonal)
and 0 (for the other elements). In the const version, *this is copied, clean() is
called on the copy, and the elements of the copy’s matrix are compared with 0 and
1.

real get_element (const unsigned short row, const unsigned [const function]
short col)
Returns the value stored in the element of matrix indicated by the arguments.

Transform t;
t.shift(1, 2, 3);

Chapter 19: Transform Reference 100

t.scale(2.5, -1.2, 4);
t.rotate(30, 15, 60);
t.show("t:");

4 t:

1.21 2.09 0.647 0
0.822 -0.654 0.58 0
-2.18 0.224 3.35 0
-3.69 1.45 11.8 1
cout << t.get_element(2, 1);
4 0.224
19.8 Returning Information
real epsilon (void) [Static function]

Returns the positive real value of smallest magnitude ¢ which an element of a
Transform should contain. An element of a Transform may also contain —e.

The value € is used for in the function clean() (see Section 19.13 [Transform Refer-
ence; Cleaning], page 107). It will also be used for comparing Transforms, when I've
added the equality operator Transform: :operator==().

epsilon() returns different values, depending on whether real is float or double: If
real is float (the default), epsilon() returns 0.00001. If real is double, it returns
0.000000001.

Please note: I haven’t tested whether 0.000000001 is a good value yet, so users should
be aware of this if they set real to double!! The way to test this is to transform two
different Transforms ¢; and t, using different rotations in such a way that the end
result should be the same for both Transforms. Let € stand for the value returned
by epsilon(). If for all sets of corresponding elements F; and F, of #; and t,,
[|E1| — |E2|| <€, then € is a good value. It will be easier to test this when I've added
Transform: : operator==().

Rotation causes a significant loss of precision to due to the use of the sin() and
cos () functions. Therefore, neither Transform: :epsilon() nor Point: :epsilon()
(see Section 22.10 [Point Reference; Returning Information], page 129) can be as
small as I’d like them to be. If they are two small, operations that test for equality
of Transforms and Points will return false for objects that should be equal.

19.9 Showing

void show ([string text = ""]) [const function]
If the optional argument text is used, and is not the empty string (""), text is
printed on a line of its own to the standard output first. Otherwise, "Transform:"
is printed on a line of its own to the standard output. Then, the elements of matrix
are printed to standard output.

1 For that matter, I haven’t really tested whether 0.00001 is a good value when real is float.

Chapter 19: Transform Reference 101

Transform t;
t.show("t:");

4 t:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

t.scale(1, 2, 3);

t.shift(1, 1, 1);

t.rotate(90, 90, 90);

t.show("t:");

4 t:
0 0 1 0
0 2 0 0
-3 0 0 0
-1 1 1 1

19.10 Affine Transformations

The affine transformation functions use their arguments to create a new Transform t (local
to the function) representing the appropriate transformation. Then, *this is multiplied
by t and t is returned. Returning t instead of *this makes it possible to put the affine
transformation function at the end of a chain of invocations of Transform: : operator*=():

Transform t0, t1, t2, t3;

t0 *= t1 %= t2 *= t3.scale(2, 3.5, 9);
t0, t1, and t2 are all multiplied by the Transform with

2 0 0 O
matrix = 0 35 0 O
0 0 9 O
0 0 01

representing the scaling operation, not t3, which may represent a combination of transfor-
mations.

Transform scale (real x, [real y = 1, [real z = 1]])