GNU Linear Programming Kit

Graph and Network Routines

for GLPK Version 4.49

(DRAFT, April 2013)

The GLPK package is part of the GNU Project released under the aegis of GNU.

Copyright (©) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013 Andrew
Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All
rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Contents

1 Basic Graph API Routines 5
1.1 Graph program object L L 5)
1.2 Graph creating and modifying routines Lo L Lo 8

1.2.1 glp_create_graph — create graph 8
1.2.2 glp_set_graph_name — assign (change) graph name 8
1.2.3 glp_add_vertices — add new vertices to graph 8
1.2.4 glp_set_vertex_name — assign (change) vertex name 9
1.2.,5 glp.add_arc — add new arctograph oo 9
1.2.6 glp_del_vertices — delete vertices from graph 9
1.2.7 glp_del_arc — delete arc from graph oo 10
1.2.8 glp_erase_graph — erase graph contento 10
1.2.9 glp_delete_graph — delete grapho oL 10
1.3 Graph searching routines L L 11
1.3.1 glp_create_v_index — create vertex name index 11
1.3.2 glp_find_vertex — find vertex by itsnameo L. 11
1.3.3 glp_delete_v_index — delete vertex name index 11
1.4 Graph reading/writing routines Lo oo 12
1.4.1 glp_read_graph — read graph from plain text file 12
1.4.2 glp_write_graph — write graph to plain text file 12
1.4.3 glpread_ccdata — read graph from text file in DIMACS clique/coloring
format 13
1.4.4 glp_write_ccdata — write graph to text file in DIMACS clique/coloring
format 15
1.5 Graph analysis routines L L 16
1.5.1 glp_weak_comp — find all weakly connected components of graph 16
1.5.2 glp_strong_comp — find all strongly connected components of graph 16
1.5.3 glp_top_sort — topological sorting of acyclic digraph 18

2 Network optimization API routines 20

2.1 Minimum cost flow problem o 20
2.1.1 Background 20
2.1.2 glp_read_mincost — read minimum cost flow problem data in DIMACS

format 21

2.2

2.3

2.4

2.1.3

2.14
2.1.5

2.1.6
2.1.7

2.1.8
2.1.9

glp_write_mincost — write minimum cost flow problem data in DIMACS
format e
glp_mincost_lp — convert minimum cost flow problem to LP
glp_mincost_okalg — solve minimum cost flow problem with out-of-kilter
algorithm
glp_mincost_relax4 — solve minimum cost flow problem with relaxation
method of Bertsekas and Tseng (RELAX-IV)
glp_netgen — Klingman’s network problem generator
glp_netgen_prob — Klingman’s standard network problem instance
glp_gridgen — grid-like network problem generator

Maximum flow problem

2.2.1
2.2.2

2.2.3

224
2.2.5

2.2.6

Background
glp_read_maxflow — read maximum flow problem data in DIMACS

format
glp_write_maxflow — write maximum flow problem data in DIMACS

format
glp_maxflow_lp — convert maximum flow problem to LP
glp_maxflow_ffalg — solve maximum flow problem with Ford-Fulkerson
algorithm
glp_rmfgen — Goldfarb’s maximum flow problem generator

Assignment problem

2.3.1
23.2
2.3.3
234
2.3.5
2.3.6

2.3.7

Background L Lo
glp_read_asnprob — read assignment problem data in DIMACS format
glp_write_asnprob — write assignment problem data in DIMACS format . . .
glp_check_asnprob — check correctness of assignment problem data
glp_asnprob_lp — convert assignment problem toLP
glp_asnprob_okalg — solve assignment problem with out-of-kilter

algorithm L
glp_asnprob_hall — find bipartite matching of maximum cardinality

Critical path problem

24.1
2.4.2

Background e
glp_cpp — solve critical path problem

3 Graph Optimization API Routines

3.1 Maximum clique problem L Lo

3.1.1
3.1.2

Background
glp_wclique_exact — find maximum weight clique with exact algorithm

54
o7
60
60
61

64
64
64
64

Chapter 1

Basic Graph APl Routines

1.1 Graph program object

In GLPK the base program object used to represent graphs and networks is a directed graph
(digraph).

Formally, digraph (or simply, graph) is a pair G = (V, A), where V is a set of vertices, and A
is a set arcs.! Each arc a € A is an ordered pair of vertices a = (z,y), where z € V is called tail
vertez of arc a, and y € V is called its head vertex.

Representation of a graph in the program includes three structs defined by typedef in the header
glpk.h:

— glp_graph, which represents the graph in a whole,

— glp_vertex, which represents a vertex of the graph, and

— glp_arc, which represents an arc of the graph.

All these three structs are “semi-opaque”, i.e. the application program can directly access their
fields through pointers, however, changing the fields directly is not allowed — all changes should
be performed only with appropriate GLPK API routines.

glp_graph. The struct glp_graph has the following fields available to the application program:
char *name;

Symbolic name assigned to the graph. It is a pointer to a null terminated character string of
length from 1 to 255 characters. If no name is assigned to the graph, this field contains NULL.

int nv;
The number of vertices in the graph, nv > 0.
int na;

The number of arcs in the graph, na > 0.

! A may be a multiset.

glp_vertex **v;

Pointer to an array containing the list of vertices. Element v[0] is not used. Element v][i],
1 < ¢ < nw, is a pointer to i-th vertex of the graph. Note that on adding new vertices to the
graph the field v may be altered due to reallocation. However, pointers v[i] are not changed
while corresponding vertices exist in the graph.

int v_size;

Size of vertex data blocks, in bytes, 0 < v_size < 256. (See also the field data in the struct
glp_vertex.)

int a_size;

Size of arc data blocks, in bytes, 0 < wv_size < 256. (See also the field data in the struct
glp_arc.)

glp_vertex. The struct glp_vertex has the following fields available to the application program:
int i;
Ordinal number of the vertex, 1 < i < nv. Note that element v[i] in the struct glp_graph
points to the vertex, whose ordinal number is 3.
char *name;

Symbolic name assigned to the vertex. It is a pointer to a null terminated character string of
length from 1 to 255 characters. If no name is assigned to the vertex, this field contains NULL.

void *data;

Pointer to a data block associated with the vertex. This data block is automatically allocated on
creating a new vertex and freed on deleting the vertex. If v_size = 0, the block is not allocated,
and this field contains NULL.

void *temp;

Working pointer, which may be used freely for any purposes. The application program can
change this field directly.

glp_arc *in;

Pointer to the (unordered) list of incoming arcs. If the vertex has no incoming arcs, this field
contains NULL.

glp_arc *out;

Pointer to the (unordered) list of outgoing arcs. If the vertex has no outgoing arcs, this field
contains NULL.

glp_arc. The struct glp_arc has the following fields available to the application program:
glp_vertex *tail;

Pointer to a vertex, which is tail endpoint of the arc.
glp_vertex *head;

Pointer to a vertex, which is head endpoint of the arc.

void *data;

Pointer to a data block associated with the arc. This data block is automatically allocated on
creating a new arc and freed on deleting the arc. If v_size = 0, the block is not allocated, and
this field contains NULL.

void *temp;

Working pointer, which may be used freely for any purposes. The application program can
change this field directly.

glp_arc *t_next;

Pointer to another arc, which has the same tail endpoint as this one. NULL in this field indicates
the end of the list of outgoing arcs.

glp_arc *h_next;

Pointer to another arc, which has the same head endpoint as this one. NULL in this field indicates
the end of the list of incoming arcs.

1.2 Graph creating and modifying routines

1.2.1 glp_create_graph — create graph

Synopsis
glp_graph *glp_create_graph(int v_size, int a_size);
Description

The routine glp_create_graph creates a new graph, which initially is empty, i.e. has no vertices
and arcs.

The parameter v_size specifies the size of vertex data blocks, in bytes, 0 < v_size < 256.
The parameter a_size specifies the size of arc data blocks, in bytes, 0 < a_size < 256.
Returns

The routine returns a pointer to the graph object created.

1.2.2 glp_set_graph name — assign (change) graph name

Synopsis
void glp_set_graph_name(glp_graph *G, const char *name);
Description

The routine glp_set_graph_name assigns a symbolic name specified by the character string
name (1 to 255 chars) to the graph.

If the parameter name is NULL or an empty string, the routine erases the existing symbolic name
of the graph.

1.2.3 glp_add_vertices — add new vertices to graph

Synopsis
int glp_add_vertices(glp_graph *G, int nadd);
Description

The routine glp_add_vertices adds nadd vertices to the specified graph. New vertices are
always added to the end of the vertex list, so ordinal numbers of existing vertices remain unchanged.
Note that this operation may change the field v in the struct glp_graph (pointer to the vertex array)
due to reallocation.

Being added each new vertex is isolated, i.e. has no incident arcs.

If the size of vertex data blocks specified on creating the graph is non-zero, the routine also
allocates a memory block of that size for each new vertex added, fills it by binary zeros, and stores
a pointer to it in the field data of the struct glp_vertex. Otherwise, if the block size is zero, the
field data is set to NULL.

Returns

The routine glp_add_vertices returns the ordinal number of the first new vertex added to the
graph.

1.2.4 glp_set_vertex_ name — assign (change) vertex name

Synopsis
void glp_set_vertex_name(glp_graph *G, int i, const char *name);
Description

The routine glp_set_vertex_name assigns a given symbolic name (1 up to 255 characters) to
i-th vertex of the specified graph.

If the parameter name is NULL or empty string, the routine erases an existing name of i-th
vertex.

1.2.5 glp_add_arc — add new arc to graph

Synopsis

glp_arc *glp_add_arc(glp_graph *G, int i, int j);
Description

The routine glp_add_arc adds one new arc to the specified graph.

The parameters i and j specify the ordinal numbers of, resp., tail and head endpoints (vertices)
of the arc. Note that self-loops and multiple arcs are allowed.

If the size of arc data blocks specified on creating the graph is non-zero, the routine also allocates
a memory block of that size, fills it by binary zeros, and stores a pointer to it in the field data of
the struct glp_arc. Otherwise, if the block size is zero, the field data is set to NULL.

1.2.6 glp_del vertices — delete vertices from graph

Synopsis
void glp_del_vertices(glp_graph *G, int ndel, const int num[]);
Description

The routine glp_del_vertices deletes vertices along with all incident arcs from the speci-
fied graph. Ordinal numbers of vertices to be deleted should be placed in locations num[1], ...,
num[ndel], ndel > 0.

Note that deleting vertices involves changing ordinal numbers of other vertices remaining in the
graph. New ordinal numbers of the remaining vertices are assigned under the assumption that the
original order of vertices is not changed.

1.2.7 glp_del arc — delete arc from graph

Synopsis
void glp_del_arc(glp_graph *G, glp_arc *a);
Description

The routine glp_del_arc deletes an arc from the specified graph. The arc to be deleted must
exist.

1.2.8 glp_erase_graph — erase graph content

Synopsis
void glp_erase_graph(glp_graph *G, int v_size, int a_size);
Description

The routine glp_erase_graph erases the content of the specified graph. The effect of this
operation is the same as if the graph would be deleted with the routine glp_delete_graph and
then created anew with the routine glp_create_graph, with exception that the pointer to the
graph remains valid.

The parameters v_size and a_size have the same meaning as for glp_create_graph.

1.2.9 glp_delete graph — delete graph

Synopsis
void glp_delete_graph(glp_graph *G);
Description

The routine glp_delete_graph deletes the specified graph and frees all the memory allocated
to this program object.

10

1.3 Graph searching routines

1.3.1 glp_create_v_index — create vertex name index

Synopsis
void glp_create_v_index(glp_graph *G);
Description

The routine glp_create_v_index creates the name index for the specified graph. The name
index is an auxiliary data structure, which is intended to quickly (i.e. for logarithmic time) find
vertices by their names.

This routine can be called at any time. If the name index already exists, the routine does
nothing.

1.3.2 glp_find vertex — find vertex by its name

Synopsis
int glp_find_vertex(glp_graph *G, const char *name);
Returns

The routine glp_find_vertex returns the ordinal number of a vertex, which is assigned (by the
routine glp_set_vertex_name) the specified symbolic name. If no such vertex exists, the routine
returns 0.

1.3.3 glp_delete_v_index — delete vertex name index

Synopsis
void glp_delete_v_index(glp_graph *G);
Description

The routine glp_delete_v_index deletes the name index previously created by the routine
glp_create_v_index and frees the memory allocated to this auxiliary data structure.

This routine can be called at any time. If the name index does not exist, the routine does
nothing.

11

1.4 Graph reading/writing routines

1.4.1 glp_read graph — read graph from plain text file

Synopsis
int glp_read_graph(glp_graph *G, const char *fname);
Description

The routine glp_read_graph reads a graph from a plain text file, whose name is specified by
the parameter fname. Note that before reading data the current content of the graph object is
completely erased with the routine glp_erase_graph.

For the file format see description of the routine glp_write_graph.
Returns

If the operation was successful, the routine returns zero. Otherwise it prints an error message
and returns non-zero.

1.4.2 glp_write_graph — write graph to plain text file

Synopsis
int glp_write_graph(glp_graph *G, const char *fname);
Description

The routine glp_write_graph writes the graph to a plain text file, whose name is specified by
the parameter fname.

Returns

If the operation was successful, the routine returns zero. Otherwise it prints an error message
and returns non-zero.

File format

The file created by the routine glp_write_graph is a plain text file, which contains the following
information:

nv na
if1] jl1]
i[2] j[2]

i[r.la]. j [nal

where: nv is the number of vertices (nodes); na is the number of arcs; i[k], kK = 1,...,na, is the
index of tail vertex of arc k; j[k]l, k =1,...,na, is the index of head vertex of arc k.

12

1.4.3 glp_read_ccdata — read graph from text file in DIMACS clique/coloring
format

Synopsis
int glp_read_ccdata(glp_graph *G, int v_wgt, const char *fname);
Description

The routine glp read _ccdata reads a graph from a text file in DIMACS clique/coloring format.
(Though this format is originally designed to represent data for the minimal vertex coloring and
maximal clique problems, it may be used to represent general undirected and directed graphs,
because the routine allows reading self-loops and multiple edges/arcs keeping the order of vertices
specified for each edge/arc of the graph.)

The parameter G specifies the graph object to be read in. Note that before reading data the
current content of the graph object is completely erased with the routine glp_erase_graph.

The parameter v_wgt specifies an offset of the field of type double in the vertex data block, to
which the routine stores the vertex weight. If v_wgt < 0, the vertex weights are not stored.

The character string fname specifies the name of a text file to be read in. (If the file name ends
with the suffix ‘. gz’, the file is assumed to be compressed, in which case the routine decompresses
it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

DIMACS clique/coloring format?

The DIMACS input file is a plain ASCII text file. It contains lines of several types described
below. A line is terminated with an end-of-line character. Fields in each line are separated by at
least one blank space. Each line begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the range [—23!,23! — 1]
while GLPK allows the quantities to be floating-point numbers.

Comment lines. Comment lines give human-readable information about the file and are ignored
by programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

¢ This is a comment line

Problem line. There is one problem line per data file. The problem line must appear before any
node or edge descriptor lines. It has the following format:

p edge NODES EDGES

The lower-case letter p signifies that this is a problem line. The four-character problem designator
edge identifies the file as containing data for the minimal vertex coloring or maximal clique problem.
The NODES field contains an integer value specifying the number of vertices in the graph. The EDGES

2This material is based on the paper “Clique and Coloring Problems Graph Format”, which is publically available
at http://dimacs.rutgers.edu/Challenges.

13

http://dimacs.rutgers.edu/Challenges

field contains an integer value specifying the number of edges (arcs) in the graph.

Vertex descriptors. These lines give the weight assigned to a vertex of the graph. There is one
vertex descriptor line for each vertex, with the following format. Vertices without a descriptor take
on a default value of 1.

n ID VALUE

The lower-case character n signifies that this is a vertex descriptor line. The ID field gives a vertex
identification number, an integer between 1 and n, where n is the number of vertices in the graph.
The VALUE field gives a vertex weight, which can either positive or negative (or zero).

Edge descriptors. There is one edge descriptor line for each edge (arc) of the graph, each with
the following format:

el J

The lower-case character e signifies that this is an edge descriptor line. For an edge (arc) (¢, 7) the
fields I and J specify its endpoints.

Example. The following example of an undirected graph:

V6 V10 v v3

3]

might be coded in DIMACS clique/coloring format as follows:

sample.col

This is an example of the vertex coloring problem data
in DIMACS format.

edge 10 21

o

c
c
c
c
c
p
c
e
e
e
e
e
e
e
e
e

W WNNNRFE PP
0 00N WENON

14

o o o o ®o ®o ©o ® ® ®© ® ® O 0
© 00 00 N ~N O OO D

=

o

1.4.4 glp_write_ccdata — write graph to text file in DIMACS clique/coloring
format

Synopsis
int glp_write_ccdata(glp_graph *G, int v_wgt, const char *fname);
Description

The routine glp write_ccdata writes the graph object specified by the parameter G to a text
file in DIMACS clique/coloring format. (Though this format is originally designed to represent
data for the minimal vertex coloring and maximal clique problems, it may be used to represent
general undirected and directed graphs, because the routine allows writing self-loops and multiple
edges/arcs keeping the order of vertices specified for each edge/arc of the graph.)

The parameter v_wgt specifies an offset of the field of type double in the vertex data block,
which contains the vertex weight. If v_wgt < 0, it is assumed that the weight of each vertex is 1.

The character string fname specifies a name of the text file to be written out. (If the file name
ends with suffix ‘.gz’, the file is assumed to be compressed, in which case the routine performs
automatic compression on writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

15

1.5 Graph analysis routines

1.5.1 glp_weak comp — find all weakly connected components of graph

Synopsis
int glp_weak_comp(glp_graph *G, int v_num);
Description
The routine glp_weak_comp finds all weakly connected components of the specified graph.

The parameter v_num specifies an offset of the field of type int in the vertex data block, to
which the routine stores the number of a weakly connected component containing that vertex. If
v_num < 0, no component numbers are stored.

The components are numbered in arbitrary order from 1 to nc, where nc is the total number of
components found, 0 < nc < |V].

Returns

The routine returns nc, the total number of components found.

1.5.2 glp_strong comp — find all strongly connected components of graph

Synopsis
int glp_strong_comp(glp_graph *G, int v_num);
Description
The routine glp_strong_comp finds all strongly connected components of the specified graph.

The parameter v_num specifies an offset of the field of type int in the vertex data block, to
which the routine stores the number of a strongly connected component containing that vertex. If
v_num < 0, no component numbers are stored.

The components are numbered in arbitrary order from 1 to nc, where nc is the total number of
components found, 0 < nc < |V|. However, the component numbering has the property that for
every arc (i — j) in the graph the condition num(i) > num(j) holds.

Returns
The routine returns nc, the total number of components found.
References

I. S. Duff, J. K. Reid, Algorithm 529: Permutations to block triangular form, ACM Trans. on
Math. Softw. 4 (1978), 189-92.

16

Example

The following program reads a graph from a plain text file ‘graph.txt’ and finds all its strongly
connected components.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

typedef struct { int num; } v_data;
#define vertex(v) ((v_data *)((v)->data))

int main(void)
{ glp_graph *G;
int i, nc;
G = glp_create_graph(sizeof(v_data), 0);
glp_read_graph(G, "graph.txt");
nc = glp_strong_comp(G, offsetof(v_data, num));
printf("nc = %d\n", nc);
for (i = 1; i <= G->nv; i++)
printf ("num([%d] = %d\n", i, vertex(G->v[i])->num);
glp_delete_graph(G);
return O;

}
If the file ‘graph.txt’ contains the following graph:

1 2 3 4
5<~—©6
N
7 8 9 10 11
N
12413 14 15

the program output may look like follows:

Reading graph from ‘graph.txt’...
Graph has 15 vertices and 30 arcs
31 lines were read

nc = 4
num[1] =
num[2] =
num[3] =
num[4] =
num[5] =
num[6] =
num[7] =
num[8] =
num[9] =

H oW WwwwNwww

17

num[10] =
num[11] =
num[12] =
num[13] =
num[14] =
num[15] =

[S

1.5.3 glp_top_sort — topological sorting of acyclic digraph

Synopsis
int glp_top_sort(glp_graph *G, int v_num);
Description

The routine glp_top_sort performs topological sorting of vertices of the specified acyclic di-
graph.

The parameter v_num specifies an offset of the field of type int in the vertex data block, to
which the routine stores the vertex number assigned. If v_num < 0, vertex numbers are not stored.

The vertices are numbered from 1 to n, where n is the total number of vertices in the graph.
The vertex numbering has the property that for every arc (i — j) in the graph the condition
num(i) < num(j) holds. Special case num(i) = 0 means that vertex ¢ is not assigned a number,
because the graph is not acyclic.

Returns

If the graph is acyclic and therefore all the vertices have been assigned numbers, the routine
glp_top_sort returns zero. Otherwise, if the graph is not acyclic, the routine returns the number
of vertices which have not been numbered, i.e. for which num(i) = 0.

Example

The following program reads a digraph from a plain text file ‘graph.txt’ and performs topo-
logical sorting of its vertices.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

typedef struct { int num; } v_data;
#define vertex(v) ((v_data *)((v)->data))

int main(void)
{ glp_graph *G;
int i, cnt;
G = glp_create_graph(sizeof (v_data), 0);
glp_read_graph(G, "graph.txt");
cnt = glp_top_sort(G, offsetof(v_data, num));
printf("cnt = %d\n", cnt);
for (i = 1; i <= G->nv; i++)
printf ("num[%d] = %d\n", i, vertex(G->v[i])->num);

18

glp_delete_graph(G);
return O;

}

If the file ‘graph.txt’ contains the following graph:

1

2 3
\
4 5—6
/ AR
7T—>8—>9510 \ 11 12—>13
15 16/ 17

N\

14

the program output may look like follows:

Reading graph from ‘graph.txt’...
Graph has 17 vertices and 23 arcs
24 lines were read

cnt = 0

num[1]
num[2]
num [3]
num [4]
num[5]
num [6]
num [7]
num [8]
num [9]
num [10]
num[11]
num[12]
num [13]
num[14]
num[15]
num[16]
num [17]

8
9
10
4
11
12

2

5
6
14
16
7
13
15
17

The output corresponds to the following vertex numbering;:

8

/ \11712\%16
\ \ —

13 15 17

Chapter 2

Network optimization API routines

2.1 Minimum cost flow problem

2.1.1 Background

The minimum cost flow problem (MCFP) is stated as follows. Let there be given a directed
graph (flow network) G = (V, A), where V is a set of vertices (nodes), and A CV x V is a set of
arcs. Let for each node ¢ € V' there be given a quantity b; having the following meaning;:

if b; > 0, then |b;| is a supply at node i, which shows how many flow units are generated at node
i (or, equivalently, entering the network through node ¢ from outside);

if b; < 0, then |b;| is a demand at node ¢, which shows how many flow units are lost at node i
(or, equivalently, leaving the network through node i to outside);

if b; = 0, then 7 is a transshipment node, at which the flow is conserved, i.e. neither generated
nor lost.

Let also for each arc a = (i,j) € A there be given the following three quantities:
l;j, a (non-negative) lower bound to the flow through arc (i, j);

uij, an upper bound to the flow through arc (4, j), which is the arc capacity;
¢ij, a per-unit cost of the flow through arc (4, j).

The problem is to find flows z;; through every arc of the network, which satisfy the specified
bounds and the conservation constraints at all nodes, and minimize the total flow cost. Here the
conservation constraint at a node means that the total flow entering this node through its incoming
arcs plus the supply at this node must be equal to the total flow leaving this node through its
outgoing arcs plus the demand at this node.

An example of the minimum cost flow problem is shown on Fig. 1.

20

20 V2 —a0,10,$2—> V3 —a0,18,$0—> Vg

< \ AN
0,14,%0 4,8,%0 0,20,$9
- | N

1 0,9,$3 0,11,81 2,12,81 Vg Vg

\023 $ i ‘/ / 4
23,80 0258 0,780 01583 ,,

Vg —0.26,80—> V5 —0,4,87—> U7 20

v — Lu,Sc = v; supply ~~ > v; v; ~~ > demand

Fig. 1. An example of the minimum cost flow problem.
The minimum cost flow problem can be naturally formulated as the following LP problem:

Zz = Z CijLij (1)

(i,5)€A

minimize

subject to

Z Tij — Z .’I}jiZbZ’ forallieV (2)

(i,7)€EA (j)eA

lij < Tij < U5 for all (Z,]) €A (3)

2.1.2 glp read mincost — read minimum cost flow problem data in DIMACS
format

Synopsis
int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
int a_cost, const char *fname);
Description

The routine glp_read_mincost reads the minimum cost flow problem data from a text file in
DIMACS format.

The parameter G specifies the graph object, to which the problem data have to be stored. Note
that before reading data the current content of the graph object is completely erased with the
routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block, to
which the routine stores b;, the supply/demand value. If v_rhs < 0, the value is not stored.

The parameter a_low specifies an offset of the field of type double in the arc data block, to
which the routine stores /;;, the lower bound to the arc flow. If a_low < 0, the lower bound is not
stored.

The parameter a_cap specifies an offset of the field of type double in the arc data block, to
which the routine stores u;;, the upper bound to the arc flow (the arc capacity). If a_cap < 0, the
upper bound is not stored.

21

The parameter a_cost specifies an offset of the field of type double in the arc data block, to
which the routine stores ¢;;, the per-unit cost of the arc flow. If a_cost < 0, the cost is not stored.

The character string fname specifies the name of a text file to be read in. (If the file name
name ends with the suffix ‘.gz’, the file is assumed to be compressed, in which case the routine
decompresses it “on the fly”.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.
Example

typedef struct
{ /* vertex data block */

double rhs;
} v_data;

typedef struct
{ /* arc data block */

double low, cap, cost;
} a_data;

int main(void)
{ glp_graph *G;
int ret;
G = glp_create_graph(sizeof (v_data), sizeof(a_data));
ret = glp_read_mincost(G, offsetof(v_data, rhs),
offsetof (a_data, low), offsetof(a_data, cap),
offsetof (a_data, cost), "sample.min");
if (ret != 0) goto ...

}
DIMACS minimum cost flow problem format'

The DIMACS input file is a plain ASCII text file. It contains lines of several types described
below. A line is terminated with an end-of-line character. Fields in each line are separated by at
least one blank space. Each line begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the range [-23!, 231 —1]
while GLPK allows the quantities to be floating-point numbers.

Comment lines. Comment lines give human-readable information about the file and are ignored
by programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

¢ This is a comment line

!This material is based on the paper “The First DIMACS International Algorithm Implementation Challenge:
Problem Definitions and Specifications”, which is publically available at http://dimacs.rutgers.edu/Challenges

22

http://dimacs.rutgers.edu/Challenges

Problem line. There is one problem line per data file. The problem line must appear before any
node or arc descriptor lines. It has the following format:

p min NODES ARCS

The lower-case character p signifies that this is a problem line. The three-character problem
designator min identifies the file as containing specification information for the minimum cost flow
problem. The NODES field contains an integer value specifying the number of nodes in the network.
The ARCS field contains an integer value specifying the number of arcs in the network.

Node descriptors. All node descriptor lines must appear before all arc descriptor lines. The
node descriptor lines describe supply and demand nodes, but not transshipment nodes. That is,
only nodes with non-zero node supply/demand values appear. There is one node descriptor line
for each such node, with the following format:

n ID FLOW

The lower-case character n signifies that this is a node descriptor line. The ID field gives a node
identification number, an integer between 1 and NODES. The FLOW field gives the amount of supply
(if positive) or demand (if negative) at node ID.

Arc descriptors. There is one arc descriptor line for each arc in the network. Arc descriptor lines
are of the following format:

a SRC DST LOW CAP COST

The lower-case character a signifies that this is an arc descriptor line. For a directed arc (i, j)
the SRC field gives the identification number ¢ for the tail endpoint, and the DST field gives the
identification number j for the head endpoint. Identification numbers are integers between 1 and
NODES. The LOW field specifies the minimum amount of flow that can be sent along arc (4, 7), and
the CAP field gives the maximum amount of flow that can be sent along arc (7, j) in a feasible flow.
The COST field contains the per-unit cost of flow sent along arc (i, j).

Example. Below here is an example of the data file in DIMACS format corresponding to the
minimum cost flow problem shown on Fig 1.

c sample.min

c

¢ This is an example of the minimum cost flow problem data
c in DIMACS format.
c

p min 9 14

c

n 1 20

n 9 -20

c

al120140
al140230
a230102
a240 93
a3b52121
a380180
a4502 0
ab20111
ab6025

23

ab70 47
a670 70
a684 80
a’79015 3
a8902 9
c

c eof

2.1.3 glp_write_mincost — write minimum cost flow problem data in DIMACS
format

Synopsis
int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
int a_cost, const char *fname);

Description

The routine glp_write_mincost writes the minimum cost flow problem data to a text file in

DIMACS format.

The parameter G is the graph (network) program object, which specifies the minimum cost flow
problem instance.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block,
which contains b;, the supply/demand value. If v_rhs < 0, it is assumed that b; = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in the arc data block, which
contains /;;, the lower bound to the arc flow. If a_low < 0, it is assumed that /;; = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains u;j, the upper bound to the arc flow (the arc capacity). If the upper bound is specified
as DBL_MAX, it is assumed that u;; = oo, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed
that u;; = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains ¢;;, the per-unit cost of the arc flow. If a_cost < 0, it is assumed that ¢;; = 0 for all arcs.

The character string fname specifies a name of the text file to be written out. (If the file name
ends with suffix ‘.gz’, the file is assumed to be compressed, in which case the routine performs
automatic compression on writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints an error message
and returns non-zero.

24

2.1.4 glp_mincost_lp — convert minimum cost flow problem to LP

Synopsis

void glp_mincost_lp(glp_prob *P, glp_graph *G, int names, int v_rhs,
int a_low, int a_cap, int a_cost);

Description

The routine glp_mincost_lp builds LP problem (1)—(3), which corresponds to the specified
minimum cost flow problem.

The parameter P is the resultant LP problem object to be built. Note that on entry its current
content is erased with the routine glp_erase_prob.

The parameter G is the graph (network) program object, which specifies the minimum cost flow
problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic names of the graph
object components to assign symbolic names to the LP problem object components. If the flag is
GLP_OFF, no symbolic names are assigned.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block,
which contains b;, the supply/demand value. If v_rhs < 0, it is assumed that b; = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in the arc data block, which
contains /;;, the lower bound to the arc flow. If a_low < 0, it is assumed that /;; = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains u;j, the upper bound to the arc flow (the arc capacity). If the upper bound is specified
as DBL_MAX, it is assumed that u;; = oo, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed
that u;; = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains c;;, the per-unit cost of the arc flow. If a_cost < 0, it is assumed that ¢;; = 0 for all arcs.

Example

The example program below reads the minimum cost problem instance in DIMACS format from
file ‘sample.min’, converts the instance to LP, and then writes the resultant LP in CPLEX format
to file ‘mincost.1p’.

#include <stddef.h>
#include <glpk.h>

typedef struct { double rhs; } v_data;
typedef struct { double low, cap, cost; } a_data;

int main(void)
{ glp_graph *G;
glp_prob *P;
G = glp_create_graph(sizeof(v_data), sizeof(a_data));
glp_read_mincost (G, offsetof(v_data, rhs),
offsetof (a_data, low), offsetof(a_data, cap),
offsetof (a_data, cost), "sample.min");
P = glp_create_prob();

25

glp_mincost_1p(P, G, GLP_ON, offsetof(v_data, rhs),
offsetof (a_data, low), offsetof(a_data, cap),
offsetof (a_data, cost));

glp_delete_graph(G);

glp_write_1p(P, NULL, "mincost.lp");

glp_delete_prob(P);

return O;

If ‘sample.min’ is the example data file from the subsection describing glp_read_mincost, file
‘mincost.1lp’ may look like follows:
Minimize
obj: + 3 x(2,4) + 2 x(2,3) + x(3,5) + 7 x(5,7) + 5 x(5,6)
+ x(5,2) + 3 x(7,9) + 9 x(8,9)

Subject To

r_1: + x(1,2) + x(1,4) = 20

r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) =0

r_3: + x(3,5) + x(3,8) - x(2,3) =0

r 4: + x(4,5) - x(2,4) - x(1,4) =0

r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) =0
r 6: + x(6,7) + x(6,8) - x(5,6) =0

r . 7: + x(7,9) - x(6,7) - x(5,7) =0

r_8: + x(8,9) - x(6,8) - x(3,8) =0

r_ 9: - x(8,9) - x(7,9) = -20

Bounds

0 <= x(1,4) <= 23
<= x(1,2) <= 14

<= x(2,3) <= 10
<= x(3,8) <= 18
<= x(3,5) <= 12
<= x(4,5) <= 26
x(5,7) <= 4
<= x(5,6) <= 25
<= x(5,2) <= 11
<= x(6,8) <=8
<= x(6,7) <=7
<= x(7,9) <= 15
<= x(8,9) <= 20

O OO P OO O ONOO OO
A
[

End

26

2.1.5 glp_mincost_okalg — solve minimum cost flow problem with out-of-kilter
algorithm

Synopsis

int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap,
int a_cost, double *sol, int a_x, int v_pi);

Description

The routine glp_mincost_okalg finds optimal solution to the minimum cost flow problem with
the out-of-kilter algorithm.? Note that this routine requires all the problem data to be integer-
valued.

The parameter G is a graph (network) program object which specifies the minimum cost flow
problem instance to be solved.

The parameter v_rhs specifies an offset of the field of type double in the vertex data block,
which contains b;, the supply/demand value. This value must be integer in the range [—INT_MAX,
+INT_MAX]. If v_rhs < 0, it is assumed that b; = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in the arc data block, which
contains [;;, the lower bound to the arc flow. This bound must be integer in the range [0, INT_MAX].
If a_low < 0, it is assumed that I;; = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the arc data block, which
contains u;j, the upper bound to the arc flow (the arc capacity). This bound must be integer in
the range [l;;, INT_MAX]. If a_cap < 0, it is assumed that u;; =1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in the arc data block, which
contains ¢;j, the per-unit cost of the arc flow. This value must be integer in the range [—INT_MAX,
+INT_MAX]. If a_cost < 0, it is assumed that ¢;; = 0 for all arcs.

The parameter sol specifies a location, to which the routine stores the objective value (that is,
the total cost) found. If sol is NULL, the objective value is not stored.

The parameter a_x specifies an offset of the field of type double in the arc data block, to which
the routine stores x;;, the arc flow found. If a_x < 0, the arc flow value is not stored.

The parameter v_pi specifies an offset of the field of type double in the vertex data block,
to which the routine stores m;, the node potential, which is the Lagrange multiplier for the corre-
s