Libidn2 Reference Manual

Libidn2 Reference Manual




Libidn2 Reference Manual

] COLLABORATORS
TITLE :
Libidn2 Reference Manual
ACTION NAME DATE SIGNATURE
WRITTEN BY March 28, 2017
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME




Libidn2 Reference Manual iii

Contents

1 Libidn2 Overview 1
L1 ddn2 . . . e e e s 1

2 Index 12




Libidn2 Reference Manual 1/12

Chapter 1

Libidn2 Overview

Libidn2 is a free software implementation of IDNA2008 and TR46.

1.1 idn2

idn2 —

Functions
int idn2_lookup_u8 ()
int idn2_register_u8 ()
int idn2_lookup_ul ()
nt 1dn2_register_ul ()
const char * 1dn2_strerror ()

Types and Values

#define IDN2_VERSION
#define IDN2_VERSION_NUMBER
#define IDN2_LABEL_MAX_LENGTH
#define IDN2_DOMAIN_MAX_LENGTH
enum idn2_flags
enum 1idn2_rc

Description

Functions

idn2_lookup_u8 ()

int

idn2_lookup_u8 (const uint8_t =xsrc,
uint8_t xxlookupname,
int flags);

Perform IDNA2008 lookup string conversion on domain name src, as described in section 5 of RFC 5891. Note that the input
string must be encoded in UTF-8 and be in Unicode NFC form.




Libidn2 Reference Manual 2/12

Pass IDN2_NFC_INPUT in flags to convert input to NFC form before further processing. Pass IDN2_ALABEL_ROUNDTRIP
in flags to convert any input A-labels to U-labels and perform additional testing. Pass IDN2_TRANSITIONAL to enable
Unicode TR46 transitional processing, and IDN2_NONTRANSITIONAL to enable Unicode TR46 non-transitional processing.
Multiple flags may be specified by binary or:ing them together, for example IDN2_NFC_INPUT | IDN2_NONTRANSITIONAL.

After version 0.11: Iookupname may be NULL to test lookup of src without allocating memory.

Parameters

input zero-terminated
src UTF-8 string in Unicode
NFC normalized form.
newly allocated output

lookupname variable with name to
lookup in DNS.
optional idn2_flags to
flags modify behaviour.
Returns

On successful conversion IDN2_OK is returned, if the output domain or any label would have been too long IDN2_TOO_BIG_DOMAIN
or IDN2_TOO_BIG_LABEL is returned, or another error code is returned.

Since: 0.1

idn2_register_u8 ()

int

idn2_register_u8 (const uint8_t =xulabel,
const uint8_t =*alabel,
uint8_t *xinsertname,
int flags);

Perform IDNA2008 register string conversion on domain label ulabel and alabel , as described in section 4 of RFC 5891.
Note that the input ulabel must be encoded in UTF-8 and be in Unicode NFC form.

Pass IDN2_NFC_INPUT in flags to convert input ulabel to NFC form before further processing.

It is recommended to supply both ulabel and alabel for better error checking, but supplying just one of them will work.
Passing in only alabel is better than only ulabel . See RFC 5891 section 4 for more information.

After version 0.11: insertname may be NULL to test conversion of src without allocating memory.

Parameters

input zero-terminated
ulabel UTF-8 and Unicode NFC
string, or NULL.

input zero-terminated ACE

alabel encoded string (xn--), or
NULL.
newly allocated output
insertname variable with name to
register in DNS.

optional idn2_flags to
modify behaviour.

flags




Libidn2 Reference Manual 3/12

Returns

On successful conversion IDN2_OK is returned, when the given ulabel and alabel does not match each other IDN2_UALABEL_MIS
is returned, when either of the input labels are too long IDN2_TOO_BIG_LABEL is returned, when alabel does does not appear
to be a proper A-label IDN2_INVALID_ALABEL is returned, or another error code is returned.

idn2_lookup_ul ()

int

idn2_lookup_ul (const char =*src,
char xxlookupname,
int flags);

Perform IDNA2008 lookup string conversion on domain name src, as described in section 5 of RFC 5891. Note that the input
is assumed to be encoded in the locale’s default coding system, and will be transcoded to UTF-8 and NFC normalized by this
function.

Pass IDN2_ALABEL_ROUNDTRIP in flags to convert any input A-labels to U-labels and perform additional testing. Pass
IDN2_TRANSITIONAL to enable Unicode TR46 transitional processing, and IDN2_NONTRANSITIONAL to enable Unicode

TR46 non-transitional processing. Multiple flags may be specified by binary or:ing them together, for example IDN2_ALABEL_ROUNI
| IDN2_NONTRANSITIONAL. The IDN2_NFC_INPUT in flags is always enabled in this function.

After version 0.11: Iookupname may be NULL to test lookup of src without allocating memory.

Parameters
input zero-terminated locale
src .
encoded string.
newly allocated output
lookupname variable with name to
lookup in DNS.
optional idn2_flags to
flags modify behaviour.
Returns

On successful conversion IDN2_OK is returned, if conversion from locale to UTF-8 fails then IDN2_ICONV_FAIL is returned, if
the output domain or any label would have been too long IDN2_TOO_BIG_DOMAIN or IDN2_TOO_BIG_LABEL is returned,
or another error code is returned.

Since: 0.1

idn2_register_ul ()

int

idn2_register_ul (const char =xulabel,
const char =xalabel,
char xxinsertname,
int flags);

Perform IDNA2008 register string conversion on domain label ulabel and alabel , as described in section 4 of RFC 5891.
Note that the input ulabel is assumed to be encoded in the locale’s default coding system, and will be transcoded to UTF-8 and
NFC normalized by this function.

It is recommended to supply both ulabel and alabel for better error checking, but supplying just one of them will work.
Passing in only alabel is better than only ulabel . See RFC 5891 section 4 for more information.

After version 0.11: insertname may be NULL to test conversion of src without allocating memory.




Libidn2 Reference Manual 4/12

Parameters
ulabel input zero-terminated locale
encoded string, or NULL.
input zero-terminated ACE
alabel encoded string (xn--), or
NULL.
newly allocated output
insertname variable with name to
register in DNS.
optional idn2_flags to
flags modify behaviour.
Returns

On successful conversion IDN2_OK is returned, when the given ulabel and alabel does not match each other IDN2_UALABEL_MIS
is returned, when either of the input labels are too long IDN2_TOO_BIG_LABEL is returned, when alabel does does not appear
to be a proper A-label IDN2_INVALID_ALABEL is returned, or another error code is returned.

idn2_strerror ()

const char~x*
idn2_strerror ();

Convert internal libidn2 error code to a humanly readable string. The returned pointer must not be de-allocated by the caller.

Returns

A humanly readable string describing error.

Types and Values
IDN2_VERSION

#define IDN2_VERSION "2.0.0"

Pre-processor symbol with a string that describe the header file version number. Used together with idn2_check_version() to
verify header file and run-time library consistency.

IDN2_VERSION_NUMBER

#define IDN2_VERSION_NUMBER 0x02000000

Pre-processor symbol with a hexadecimal value describing the header file version number. For example, when the header version
is 1.2.4711 this symbol will have the value 0x01021267. The last four digits are used to enumerate development snapshots, but
for all public releases they will be 0000.

IDN2_LABEL_MAX_LENGTH

#define IDN2_LABEL_MAX_LENGTH 63

Constant specifying the maximum length of a DNS label to 63 characters, as specified in RFC 1034.




Libidn2 Reference Manual

5/12

IDN2_DOMAIN_MAX_LENGTH

#define IDN2_DOMAIN_MAX_ LENGTH 255

Constant specifying the maximum size of the wire encoding of a DNS domain to 255 characters, as specified in RFC 1034.
Note that the usual printed representation of a domain name is limited to 253 characters if it does not end with a period, or 254

characters if it ends with a period.

enum idn2_flags

Flags to IDNA2008 functions, to be binary or:ed together. Specify only 0 if you want the default behaviour.

Members

IDN2_NFC_INPUT

ormalize
in-
plit
string
us-
ing
nor-
mal-
iza-
on
rm

IDN2_ALABEL_ROUNDTRIP

erform
op-
tipnal
IDNA2008
lookup
roundtrip
check.

IDN2_TRANSITIONAL

Perform
Uni-
code
TR46
tran-

si-
tipnal
pro-
cess-
ing.

IDN2_NONTRANSITIONAL

in
Perform
Uni-

code

TR46

non-
ransitional

Lol =y
¢




Libidn2 Reference Manual 6/12

Libidn

IDN2_ALLOW_UNASSIGNED bil-

IDN2_USE_STD3_ASCII_RULES bil-

flag,
un-
used.

enum idn2_rc

Return codes for IDN2 functions. All return codes are negative except for the successful code IDN2_OK which are guaranteed
to be

1. Positive values are reserved for non-error return codes.

Note that the idn2_rc enumeration may be extended at a later date to include new return codes.

Members

Successful
IDN2_OK re-
turn.

Memory
al-
lo-
IDN2_MALLOC ca-

IDN2_NO_CODESET cale




Libidn2 Reference Manual

7/12

IDN2_ICONV_FAIL

IDN2_ENCODING_ERROR

U

8
Unicode
data

en-

IDN2_NFC

mal-
iz-
ing
string.

IDN2_PUNYCODE_BAD_INPUT

Punycode
in-
valid
in-
nt.

IDN2_PUNYCODE_BIG_OUTPUT

P
Punycode
ont-

put

buffer

tgo

small.

IDN2_PUNYCODE_OVERFLOW

av)

unycode
con-
ver-
sion
ould
er-

IDN2_TOO_BIG_DOMAIN

omain
ame
longer
than
255
char-
ac-

tars.

W
0
flow.
D
n

IDN2_TOO_BIG_LABEL

Domain

longer
than

char-
ac-
tars.




Libidn2 Reference Manual

8/12

IDN2_INVALID_ALABEL

1put
bel

Ot
alid.

IDN2_UALABEL_MISMATCH

1put

bel
nd
bel
0es
Ot
atch.

IDN2_INVALID_FLAGS

walid
pm-

IDN2_NOT_NFC

IDN2_2HYPHEN

hens.

IDN2_HYPHEN_STARTEND

tring

art-
g/end-

y_
hen.




Libidn2 Reference Manual

9/12

IDN2_LEADING_COMBINING

tring

char-
ac-

IDN2_DISALLOWED

String
has

lawed
char-

i

IDN2_CONTEXTJ

a
(&
String
has

for-
bid-
den
context-
J

char-
ac-
ter.

IDN2_CONTEXTJ_NO_RULE

String
has
context-

char-

IDN2_CONTEXTO

den
context-

char-
ac-
tar.




Libidn2 Reference Manual

10/12

IDN2_CONTEXTO_NO_RULE

String
has
context-
0

IDN2_UNASSIGNED

IDN2_BIDI

en
rectional
rop-

T oo g =S »

e

€S.

IDN2_DOT_IN_LABEL

abel
as

N oo o He
=5 %

TR46).

IDN2_INVALID_TRANSITIONAL

=
[
o
g

char-

tran-

tipnal
mode
(TR406).




Libidn2 Reference Manual 11/12

IDN2_INVALID_NONTRANSITIONAL




Libidn2 Reference Manual 12/12

Chapter 2

Index

I
IDN2_DOMAIN_MAX_LENGTH, 5
idn2_flags, 5
IDN2_LABEL_MAX_LENGTH, 4
idn2_lookup_us8, 1
idn2_lookup_ul, 3

idn2_rc, 6

idn2_register_us§, 2
idn2_register_ul, 3

idn2_strerror, 4

IDN2_VERSION, 4
IDN2_VERSION_NUMBER, 4




	Libidn2 Overview
	idn2

	Index

