
Geiser User Manual
Emacs and Scheme talk to each other

Jose Antonio Ortega Ruiz

This manual documents Geiser, an Emacs environment to hack in Scheme.

Copyright c© 2010, 2011, 2012, 2013, 2014 Jose Antonio Ortega Ruiz

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is available from the Free Software Foundation Web site at
http://www.gnu.org/licenses/fdl.html.

The document was typeset with GNU Texinfo.

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/software/texinfo/index.html

i

Table of Contents

1 Introduction . 1
1.1 Modus operandi . 1
1.2 Showing off . 1

2 Installation . 3
2.1 Must needs . 3
2.2 The easy and quick way . 3
2.3 Installing from source . 3
2.4 Friends . 5

3 The REPL . 6
3.1 Starting the REPL . 6
3.2 First aids . 7
3.3 Switching context . 7
3.4 Completion and error handling . 8
3.5 Autodoc and friends . 8
3.6 Seeing is believing . 9
3.7 Customization and tips . 9

4 Between the parens . 12
4.1 Activating Geiser . 12
4.2 The source and the REPL . 13
4.3 Documentation helpers . 14
4.4 To eval or not to eval . 16
4.5 To err: perchance to debug . 17
4.6 Jumping around . 18
4.7 Geiser writes for you . 18

5 Cheat sheet . 20
5.1 Scheme buffers . 20
5.2 REPL . 21
5.3 Documentation browser . 22

6 No hacker is an island . 23

Index . 24

Chapter 1: Introduction 1

1 Introduction

Geiser is an Emacs environment to hack and have fun in Scheme. If that’s enough for you,
see Chapter 2 [Installation], page 3 to get it running and Chapter 3 [The REPL], page 6
for the fun part.

1.1 Modus operandi

As already mentioned, Geiser relies on a running Scheme process to obtain the information it
makes accessible to the programmer. There’s little effort, on the Elisp side, to understand,
say, the module system used by the Scheme implementation at hand; instead, a generic
interface between the two worlds is defined, and each supported Scheme includes a library
implementing that API, together with some wee shims in Elisp allowing the reuse of the
Emacs-side framework, which constitutes the bulk of the code.

While being as generic as possible, the Scheme-Elisp interface makes some assumptions
about the capabilities and interaction mode of the corresponding REPL. In particular,
Geiser expects the latter to support namespaces in the form of a module system, and to
provide a well-defined way to establish the REPL’s current namespace (or module), as well
as the current file’s module (or namespace). Thus, all evaluations performed by Geiser either
in the REPL or in a source code buffer happen in the context of the current namespace.
Every time you switch to a different file, you’re switching namespaces automatically; at the
REPL, you must request the switch explicitly (usually just using means provided by the
Scheme implementation itself).

If your favourite Scheme supports the above modus operandi, it has all that’s needed for
a bare-bones Geiser mode. But Geiser can, and will, use any metadata available: proce-
dure arities and argument lists to display interactive help, documentation strings, location
information to jump to definitions, export lists to provide completion, and so on and so
forth. Although this is not an all-or-none proposition (Geiser can operate with just part of
that functionality available), i’ve initially concentrated in supporting those Schemes with
the richest (to my knowledge) introspection capabilities, namely, Guile and Racket.

1.2 Showing off

When working with a fully conniving Scheme, Geiser can offer the following functionality:

• Form evaluation in the context of the current file’s module.

• Macro expansion.

• File/module loading and/or compilation.

• Namespace-aware identifier completion (including local bindings, names visible in the
current module, and module names).

• Autodoc: the echo area shows information about the signature of the procedure/macro
around point automatically.

• Jump to definition of identifier at point.

• Access to documentation (including docstrings when the implementation provides it).

• Listings of identifiers exported by a given module.

• Listings of callers/callees of procedures.

Chapter 1: Introduction 2

• Rudimentary support for debugging (when the REPL provides a debugger) and error
navigation.

• Support for multiple, simultaneous REPLs.

• Support for image display in those Schemes that treat them as first class values.

In the following pages, i’ll try to explain what these features actually are (i’m just
swanking here), and how to use them for your profit. But, before that, let’s see how to
install Geiser.

Chapter 2: Installation 3

2 Installation

2.1 Must needs

If Geiser came with any guarantees, you’d break all of them by not using GNU Emacs
23.2 (or better: i regularly use it with a recent Emacs snapshot) and at least one of the
supported Schemes, namely:

• Racket 6.0 or better

• Guile 2.0.9 or better

Since Geiser supports multiple REPLs, having both of them will just add to the fun.

You’ll also need Geiser itself. The quickest installation is via its ELPA package, as
described in the next section. If you prefer to use the source code directly, it’s not that
difficult either: just keep on reading.

2.2 The easy and quick way

Did i mention that the easiest way of installing Geiser is using its ELPA package? If you’re
using Emacs 24, ELPA is already there; for earlier versions, the page i just linked to twice
will tell you where to find the goodies.

ELPA packages live in repositories accessible via HTTP. You can find Geiser’s package
either in Marmalade (for releases) or in MELPA (for the unstable version directly from the
git repo). To tell Emacs that a repo exists, you add it to package-archives:

(require ’package)

(add-to-list ’package-archives

’("marmalade" . "http://marmalade-repo.org/packages/"))

;; You don’t need this one if you prefer marmalade and released versions:

;; (add-to-list ’package-archives

;; ’("melpa" . "http://melpa.milkbox.net/packages/"))

(package-initialize)

And then installing Geiser is as easy as:

M-x package-install RET geiser RET

Alternatively, you can manually download the package file, and install from your local
disk with M-x package-install-file

With that, you are pretty much all set up. See Chapter 3 [The REPL], page 6 to start
using Geiser.

And, by the way, if you prefer to keep reading this manual within Emacs, C-h i m Geiser

RET will bring you to the info version of it that you just installed!

2.3 Installing from source

Downloading Geiser

The latest release tarball can be found here. Just download geiser-0.6.tar.gz and untar it
in a directory of your choice.

http://www.racket-lang.org
http://www.gnu.org/software/guile
http://emacswiki.org/emacs/ELPA
http://emacswiki.org/emacs/ELPA
http://marmalade-repo.org
http://melpa.milkbox.net
http://download.savannah.gnu.org/releases/geiser/packages/geiser-0.6.tar
http://download.savannah.gnu.org/releases/geiser/0.6/
http://download.savannah.gnu.org/releases/geiser/0.6/geiser-0.6.tar.gz

Chapter 2: Installation 4

If you feel like living on the bleeding edge, just grab Geiser from its Git repository over
at Savannah, either with the following incantation:

git clone git://git.sv.gnu.org/geiser.git

or, if you happen to live behind a firewall, with the alternative:

git clone http://git.sv.gnu.org/r/geiser.git

You can also follow Geiser’s development in one or three mirrors that are kept synchronized
with the one at Savannah.

Either way, you’ll now be in possession of a copy of Geiser’s libre code. I’ll follow you
into its directory and the next section.

Setting it up

Geiser is ready to be used out of the box without much more ado. For the sake of concrete-
ness, let’s assume you put its source in the directory ‘~/lisp/geiser’. All you need to do
is to add the following line to your Emacs initialisation file (be it ‘~/.emacs’ or any of its
moral equivalents):

(load-file "~/lisp/geiser/elisp/geiser.el")

or simply evaluate that form inside Emacs (you wouldn’t kill a friend just to start using
Geiser, would you?). That’s it: you’re ready to go (see Chapter 3 [The REPL], page 6).

If you obtained the Geiser source tree from a release tarball, you can even continue to
read this fine manual inside Emacs by opening ‘doc/geiser.info’ using C-u C-h i. The
manual is also available in PDF format here.

What? You still here? I promise the above is all that’s needed to start using Geiser.
But, in case you are missing your configure/make all install routine, by all means, you
can go through those motions to byte compile and install Geiser too. That is, you enter the
source directory and (since we grabbed the development tree) run the customary autogen
script:

$ cd ~/lisp/geiser

$./autogen.sh

I recommend that you compile Geiser in a separate directory:

$ mkdir build && cd build

$../configure

<some drivel here>

$ make all

<more of the above>

Now you have two options: loading the byte-compiled Geiser from the ‘elisp’ subdirec-
tory, or installing it system-wide. To load the byte-code from here, add this line to your
initialisation file:

(load "~/lisp/geiser/build/elisp/geiser-load")

and eval that form and you’re done (you could also restart Emacs, but killing your friends
is widely considered bad form). Yes, that’s load and ‘geiser-load’ instead of load-file
and ‘geiser.el’.

If you prefer a system-wide installation, just type:

http://git.savannah.nongnu.org/cgit/geiser.git/
http://git.savannah.nongnu.org/cgit/geiser.git/
https://github.com/jaor/geiser
http://repo.or.cz/w/geiser.git
http://gitorious.org/geiser
http://download.savannah.gnu.org/releases/geiser/0.6/geiser-manual-0.6.pdf

Chapter 2: Installation 5

$ sudo make install

With the above spell, Geiser will be compiled and installed in a safe place inside Emacs
load path. To load it into Emacs you’ll need, instead of the load-file form above, the
following line in your initialisation file:

(require ’geiser-install)

Please note that we’re requiring geiser-install, and not geiser, and that there’s no
load-file to be seen this time. There are some ways of fine-tuning this process, mainly by
providing additional arguments in the call to configure: you’ll find those gory details in
the file called ‘INSTALL’, right at the root of the source tree. The installation will also take
care of placing this manual, in Info format, where Emacs can find it, so you can continue
to learn about Geiser inside its natural habitat. See you there and into the next chapter!

2.4 Friends

Although Geiser does not need them, it plays well with (and is enhanced by) the following
Emacs packages:

• Paredit. Regardless of whether you use Geiser or not, you shouldn’t be coding in any
Lisp dialect without the aid of Taylor Campbell’s structured editing mode.

• Company. Nikolaj Schumacher’s and Dmitry Gutov’s company-mode provides a generic
front-end for completion engines (such as Geiser’s), with pretty and automatic comple-
tion lists.

• ac-geiser If you prefer auto-complete-mode to company-mode, Xiao Hanyu’s
ac-geiser, which provides a Geiser plugin for the popular Emacs Auto Completion
Mode, is the package for you. Like Geiser, ac-geiser is available in Marmalade and
MELPA, and also as an el-get package.

• Quack. You can still use the many goodies provided by Neil van Dyke’s quack-mode,
since most of them are not (yet) available in Geiser. The only caveat might be a
conflict between Quack’s and Geiser’s default key bindings, which i’m sure you’ll man-
age to tackle just fine. It’s also probably a good idea to require quack after loading
‘geiser.el’ (or requiring a compiled version).

You just need to install and setup them as usual, for every package’s definition of usual.
Geiser will notice their presence and react accordingly.

http://www.emacswiki.org/emacs/ParEdit
http://company-mode.github.io/
https://github.com/xiaohanyu/ac-geiser/
http://cx4a.org/software/auto-complete/
http://cx4a.org/software/auto-complete/
http://www.neilvandyke.org/quack/

Chapter 3: The REPL 6

3 The REPL

If you’ve followed the instructions in Chapter 2 [Installation], page 3, your Emacs is now
ready to start playing. Otherwise, i’ll wait for you: when you’re ready, just come back here
and proceed to the following sections.

3.1 Starting the REPL

To start a Scheme REPL (meaning, a Scheme process offering you a Read-Eval-Print Loop),
Geiser provides the generic interactive command run-geiser. If you invoke it (via, as is
customary in Emacs, M-x run-geiser), you’ll be saluted by a prompt asking which one
of the supported implementations you want to launch—yes, you can stop the asking, see
Section 3.7 [Customization and tips], page 9. Tabbing for completion will offer you, as
of this writing, guile and racket. Just choose your poison, and a new REPL buffer will
pop up (by default, the REPL will appear in a new window: if that annoys you, just set
geiser-repl-use-other-window to nil and the current window will be used).

If all went according to plan, you’ll be facing an implementation-dependent banner,
followed by an interactive prompt. Going according to plan includes having the executable
of the Scheme you chose in your path. If that’s not the case, you can tell Emacs where it
is, as described in Section 3.7 [Customization and tips], page 9. Returning to our REPL,
the first thing to notice is that the funny prompt is telling you your current module: its
name is the part just after the @ sign (in Guile, that means guile-user, while Racket’s top
namespace doesn’t have a name; cf. discussion in Section 3.3 [Switching context], page 7).
Other than that, this is pretty much equivalent to having a command-line interpreter in
a terminal, with a bunch of add-ons that we’ll be reviewing below. You can start typing
sexps right there: Geiser will only dispatch them for evaluation when they’re complete, and
will indent new lines properly until then. It will also keep track of your input, maintaining
a history file that will be reloaded whenever you restart the REPL.

If you’re not happy with the faces Geiser is using for the REPL’s prompt and evaluated
input, you can customise geiser-font-lock-repl-prompt and geiser-font-lock-repl-

input to better looking faces.

Connecting to an external Scheme

There’s an alternative way of starting a Geiser REPL: you can connect to an external
Scheme process, provided it’s running a REPL server at some known port. How to make
that happen depends on the Scheme implementation.

If you use Guile, you just need to start your Guile process (possibly outside Emacs)
passing to it the flag --listen. This flag accepts an optional port as argument (as in
--listen=1969), if you don’t want to use the default.

In Racket, you have to use the REPL server that comes with Geiser. To that end,
put Geiser’s Racket ‘scheme’ directory in Racket’s collection search path and invoke
start-geiser (a procedure in the module geiser/server) somewhere in your program,
passing it the desired port and, if desired, network interface name. This procedure will
start the REPL server in a separate thread. For an example of how to do that, see
the script ‘bin/geiser-racket.sh’ in the source distribution, or, if you’ve compiled
Geiser, ‘bin/geiser-racket-noinst’ in the build directory, or, if you’ve installed Geiser,

Chapter 3: The REPL 7

‘geiser-racket’ in ‘<installation-prefix>/bin’. These scripts start a new interactive
Racket that is also running a REPL server (they also load the errortrace library to provide
better diagnostics, but that’s not strictly needed).

With your external Scheme process running and serving, come back to Emacs and exe-
cute M-x geiser-connect, M-x connect-to-guile or M-x connect-to-racket. You’ll be
asked for a host and a port, and, voila, you’ll have a Geiser REPL that is served by the
remote Scheme process in a dedicated thread, meaning that your external program can go
on doing whatever it was doing while you tinker with it from Emacs. Note, however, that all
Scheme threads share the heap, so that you’ll be able to interact with those other threads in
the running Scheme from Emacs in a variety of ways. For starters, all your (re)definitions
will be visible everywhere. That’s dangerous, but will come in handy when you need to
debug your running web server.

The connection between Emacs and the Scheme process goes over TCP, so it can be as
remote as you need, perhaps with the intervention of an SSH tunnel.

3.2 First aids

A quick way of seeing what else Geiser’s REPL can do for you, is to display the corresponding
entry up there in your menu bar. No, i don’t normally use menus either; but they can come
in handy until you’ve memorized Geiser’s commands, as a learning device. And yes, i
usually run Emacs inside a terminal, but one can always use La Carte to access the menus
in a convenient enough fashion.

Or just press C-h m and be done with that.

Among the commands at your disposal, we find the familiar input navigation keys, with a
couple twists. By default, M-p and M-n are bound to matching items in your input history.
That is, they’ll find the previous or next sexp that starts with the current input prefix
(defined as the text between the end of the prompt and your current position, a.k.a. point,
in the buffer). For going up and down the list unconditionally, just use C-c M-p and C-c

M-n. In addition, navigation is sexp-based rather than line-based.

There are also a few commands to twiddle with the Scheme process. C-c C-q will gently
ask it to quit, while C-u C-c C-q will mercilessly kill the process (but not before stowing
your history in the file system). Unless you’re using a remote REPL, that is, in which
case both commands will just sever the connection and leave the remote process alone. If
worse comes to worst and the process is dead, C-c C-z will restart it. However, the same
shortcut, issued when the REPL is alive, will bring you back to the buffer you came from,
as explained in Section 4.2 [The source and the REPL], page 13.

The remaining commands are meatier, and deserve sections of their own.

3.3 Switching context

In tune with Geiser’s modus operandi, evaluations in the REPL take place in the namespace
of the current module. As noted above, the REPL’s prompt tells you the name of the
current module. To switch to a different one, you can use the command switch-to-geiser-

module, bound to C-c C-m. You’ll notice that Geiser simply uses a couple of meta-commands
provided by the Scheme REPL (the stock ,m in Guile and the (geiser-defined) ,enter in
Racket), and that it doesn’t even try to hide that fact. That means that you can freely use

http://www.emacswiki.org/emacs/LaCarte

Chapter 3: The REPL 8

said native ways directly at the REPL, and Geiser will be happy to oblige. In Racket, ,enter
works like Racket’s standard enter! form, but you can also provide a path string as its
argument (e.g., ,enter "/tmp/foo.rkt" is equivalent to ,enter (file "/tmp/foo.rkt")).
Like enter!, ,enter accepts also module names (as in, say, ,enter geiser/main). As
mentioned, Guile’s ,m is used as is.

Once you enter a new module, only those bindings visible in its namespace will be
available to your evaluations. All Schemes supported by Geiser provide a way to import
new modules in the current namespace. Again, there’s a Geiser command, geiser-repl-
import-module, to invoke such functionality, bound this time to C-c C-i. And, again,
you’ll see Geiser just introducing the native incantation for you, and you’re free to use such
incantations by hand whenever you want.

One convenience provided by these two Geiser commands is that completion is available
when introducing the new module name, using the TAB key. Pressing it at the command’s
prompt will offer you a prefix-aware list of available module names.

Which brings me to the next group of REPL commands.

3.4 Completion and error handling

We’ve already seen Geiser completion of module names in action at the minibuffer. You
won’t be surprised to know that it’s also available at the REPL buffer itself. There, you can
use either C-. or M-‘ to complete module names, and TAB or M-TAB to complete identifiers.
Geiser will know what identifiers are bound in the current module and show you a list of
those starting with the prefix at point. Needless to say, this is not a static list, and it will
grow as you define or import new bindings in the namespace at hand. If no completion is
found, TAB will try to complete the prefix after point as a module name.

REPL buffers use Emacs’ compilation mode to highlight errors reported by the Scheme
interpreter, and you can use the next-error command (M-g n) to jump to their location.
By default, every time you enter a new expression for evaluation old error messages are
forgotten, so that M-g n will always jump to errors related to the last evaluation request,
if any. If you prefer a not-so-forgetful REPL, set the customization variable geiser-repl-
forget-old-errors-p to nil. Note, however, that even when that variable is left as t, you
can always jump to an old error by moving to its line at the REPL and pressing RET. When
your cursor is away from the last prompt, TAB will move to the next error in the buffer, and
you can use BACKTAB everywhere to go to the previous one.

3.5 Autodoc and friends

Oftentimes, there’s more you’ll want to know about an identifier besides its name: What
module does it belong to? Is it a procedure and, if so, what arguments does it take? Geiser
tries to help you answering those questions too.

Actually, if you’ve been playing with the REPL as you read, you might have notice some
frantic activity taking place in the echo area every now and then. That was Geiser trying
to be helpful (while, hopefully, not being clippy), or, more concretely, what i call, for want
of a better name, its autodoc mode. Whenever it’s active (did you notice that A in the
mode-line?), Geiser’s gerbils will be scanning what you type and showing (unless you silence
them with C-c C-d C-a) information about the identifier nearest to point.

Chapter 3: The REPL 9

If that identifier corresponds to a variable visible in the current namespace, you’ll see
the module it belongs to and its value. For procedures and macros, autodoc will display,
instead of their value, the argument names (or an underscore if Geiser cannot determine the
name used in the definition). Optional arguments are surrounded by parentheses. When
the optional argument has a default value, it’s represented by a list made up of its name
and that value. When the argument is a keyword argument, its name has “#:” as a prefix.

If that’s not enough documentation for you, C-c C-d d will open a separate documen-
tation buffer with help on the symbol at point. This buffer will contain implementation-
specific information about the identifier (e.g., its docstring for Guile, or its contract, if any,
for Racket), and a handy button to open the corresponding manual entry for the sym-
bol, which will open an HTML page (for Racket) or the texinfo manual (for Guile). If
you’d rather go directly to the manual, try C-c C-d i, which invokes geiser-doc-look-

up-manual as the handy button does.

Geiser can also produce for you a list, classified by kind, of the identifiers exported by
a given module: all you need to do is press C-c C-d m, and type or complete the desired
module’s name.

The list of exported bindings is shown, again, in a buffer belonging to Geiser’s documen-
tation browser, where you have at your disposal a bunch of navigation commands listed in
Section 5.3 [Documentation browser], page 22.

We’ll have a bit more to say about the documentation browser in Section 4.3 [Documen-
tation helpers], page 14.

If that’s still not enough, Geiser can jump, via M-., to the symbol’s definition. A buffer
with the corresponding file will pop up, with its point resting upon the identifier’s defining
form. When you’re done inspecting, M-, will bring you back to where you were. As we will
see, these commands are also available in Scheme buffers. M-. also works for modules: if
your point is on an unambiguous module name, the file where it’s defined will be opened
for you.

3.6 Seeing is believing

In schemes that support images as values (currently, that means Racket), the REPL will
display them inline if you’re using them in a graphics-aware Emacs.

For the terminal, images will appear as buttons: press return on them to invoke an
external viewer (configurable via geiser-image-viewer) that will show you the image at
hand. You can also ask for the same behaviour on all emacsen by customising geiser-

repl-inline-images-p to nil.

Geiser keeps a cache of the last displayed images in the directory geiser-image-cache-

dir, which defaults to the system’s temp directory, with up to geiser-image-cache-keep-
last files. You can invoke the external image viewer on any of them with M-x geiser-view-

last-image, which takes a prefix argument to indicate which image number you want, 0
corresponding to the newest one.

3.7 Customization and tips

The looks and ways of the REPL can be fine-tuned via a bunch of customization variables.
You can see and modify them all in the corresponding customization group (by using the

Chapter 3: The REPL 10

menu entry or the good old M-x customize-group geiser-repl), or by setting them in
your Emacs initialisation files (as a rule, all knobs in Geiser are tunable this way: you don’t
need to use customization buffers if you don’t like them).

I’m documenting below a proper subset of those settings, together with some related
tips.

Choosing a Scheme implementation

Instead of using the generic run-geiser command, you can start directly your Scheme
of choice via run-racket or run-guile. In addition, the variable geiser-active-

implementations contains a list of those Schemes Geiser should be aware of. Thus, if you
happen to be, say, a racketeer not to be beguiled by other schemes, you can tell Geiser to
forget about the richness of the Scheme ecosystem with something like:

(setq geiser-active-implementations ’(racket))

in your initialisation files.

When starting a new REPL, Geiser assumes, by default, that the corresponding Scheme
binary is in your path. If that’s not the case, the variables to tweak are geiser-guile-

binary and geiser-racket-binary, which should be set to a string with the full path to
the requisite binary.

Before starting the REPL, Geiser will check wether the version of your Scheme interpreter
is good enough. This means that it will spend a couple tenths of a second launching and
quickly discarding a Scheme process, but also that the error message you’ll get if you’re
on the wrong Scheme version will be much more informative. If you one to avoid version
checks, just check geiser-repl-skip-version-check-p to t in your configuration.

You can also specify a couple more initialisation parameters. For Guile, geiser-guile-
load-path is a list of paths to add to its load path (and its compiled load path) when it’s
started, while geiser-guile-init-file is the path to an initialisation file to be loaded on
start-up. The equivalent variables for Racket are geiser-racket-collects and geiser-

racket-init-file.

Note, however, that specifying geiser-guile-init-file is not equivalent to changing
Guile’s initialization file (‘~/.guile’), because the former is loaded using the -l flag, to-
gether with -q to disable loading the second. But there are subtle differences in the way
Guile loads the initialization file versus how it loads a file specified via the -l flag. If
what you want is just loading ‘~/.guile’, leave geiser-guile-init-file alone and set
geiser-guile-load-init-file-p to t instead.

Racket startup time

When starting Racket in little computers, Geiser might have to wait a bit more than it
expects (which is ten seconds, or ten thousand milliseconds, by default). If you find that
Geiser is giving up too quickly and complaining that no prompt was found, try to increase
the value of geiser-repl-startup-time to, say, twenty seconds:

(setq geiser-repl-startup-time 20000)

If you prefer, you can use the customize interface to, well, customise the above variable’s
value.

Chapter 3: The REPL 11

History

By default, Geiser won’t record duplicates in your input history. If you prefer it did, just
set geiser-repl-history-no-dups-p to nil. History entries are persistent across REPL
sessions: they’re saved in implementation-specific files whose location is controlled by the
variable geiser-repl-history-filename. For example, my Geiser configuration includes
the following line:

(setq geiser-repl-history-filename "~/.emacs.d/geiser-history")

which makes the files ‘geiser-history.guile’ and ‘geiser-history.racket’ to live inside
my home’s ‘.emacs.d’ directory.

Autodoc

If you happen to love peace and quiet and prefer to keep your REPL’s echo area free from
autodoc’s noise, geiser-repl-autodoc-p is the customization variable for you: set it to
nil and autodoc will be disabled by default in new REPLs. You can always bring the fairies
back, on a per-REPL basis, using C-c C-d C-a.

Remote connections

When using connect-to-guile, connect-to-racket or geiser-connect, you’ll be
prompted for a host and a port, defaulting to “localhost” and 37146. You can change
those defaults customizing geiser-repl-default-host and geiser-repl-default-port,
respectively.

Killing REPLs

If you don’t want Emacs to ask for confirmation when you’re about to kill a live REPL
buffer (as will happen, for instance, if you’re exiting Emacs before closing all your REPLs),
you can set the flag geiser-repl-query-on-kill-p to nil. On a related note, the cus-
tomizable variable geiser-repl-query-on-exit-p controls whether Geiser should ask for
confirmation when you exit the REPL explicitly (via, say, C-c C-q, as opposed to killing
the buffer), and is set to nil by default.

Chapter 4: Between the parens 12

4 Between the parens

A good REPL is a must, but just about half the story of a good Scheme hacking environment.
Well, perhaps a bit more than a half; but, at any rate, one surely needs also a pleasant way
of editing source code. Don’t pay attention to naysayers: Emacs comes with an excellent
editor included for about any language on Earth, and just the best one when that language
is sexpy (especially if you use Paredit). Geiser’s support for writing Scheme code adds to
Emacs’ scheme-mode, rather than supplanting it; and it does so by means of a minor mode
(unimaginatively dubbed geiser-mode) that defines a bunch of new commands to try and,
with the help of the same Scheme process giving you the REPL, make those Scheme buffers
come to life.

4.1 Activating Geiser

With Geiser installed following any of the procedures described in Section 2.2 [The easy
and quick way], page 3 or Section 2.3 [From the source’s mouth], page 3, Emacs will auto-
matically activate geiser-mode when opening a Scheme buffer. Geiser also instructs Emacs
to consider files with the extension ‘rkt’ part of the family, so that, in principle, there’s
nothing you need to do to ensure that Geiser’s extensions will be available, out of the box,
when you start editing Scheme code.

Indications that everything is working according to plan include the ’Geiser’ minor mode
indicator in your mode-line and the appearance of a new entry for Geiser in the menu bar.
If, moreover, the mode-line indicator is the name of a Scheme implementation, you’re indeed
in a perfect world; otherwise, don’t despair and keep on reading: i’ll tell you how to fix that
in a moment.

The menu provides a good synopsis of everything Geiser brings to the party, including
those keyboard shortcuts we Emacsers love. If you’re seeing the name of your favourite
Scheme implementation in the mode-line, have a running REPL and are comfortable with
Emacs, you can stop reading now and, instead, discover Geiser’s joys by yourself. I’ve
tried to make Geiser as self-documenting as any self-respecting Emacs package should be.
If you follow this route, make sure to take a look at Geiser’s customization buffers (M-x
customize-group RET geiser): there’s lot of fine-tuning available there. You might also
want to take a glance at the tables in see Chapter 5 [Cheat sheet], page 20.

Since geiser-mode is a minor mode, you can toggle it with M-x geiser-mode, and control
its activation in hooks with the functions turn-on-geiser-mode and turn-off-geiser-

mode. If, for some reason i cannot fathom, you prefer geiser-mode not to be active by
default, customizing geiser-mode-auto-p to nil will do the trick.

And if you happen to use a funky extension for your Scheme files that is not recognised
as such by Emacs, just tell her about it with:

(add-to-list ’auto-mode-alist ’("\\.funky-extension\\’" . scheme-mode))

Now, geiser-mode is just a useless wretch unless there’s a running Scheme process backing
it up. Meaning that virtually all the commands it provides require a REPL up and running,
preferably corresponding to the correct Scheme implementation. In the following section,
we’ll see how to make sure that that’s actually the case.

Chapter 4: Between the parens 13

4.2 The source and the REPL

As i’ve already mentioned a couple of times, geiser-mode needs a running REPL to be
operative. Thus, a common usage pattern will be for you to first call run-geiser (or one of
its variants, e.g. run-guile), and then open some Scheme files; but there’s nothing wrong
in first opening a couple Scheme buffers and then starting the REPL (you can even find it
more convenient, since pressing C-c C-z in a Scheme buffer will start the REPL for you).
Since Geiser supports more than one Scheme implementation, though, there’s the problem
of knowing which of them is to be associated with each Scheme source file. Serviceable as
it is, geiser-mode will try to guess the correct implementation for you, according to the
algorithm described below.

How Geiser associates a REPL to your Scheme buffer

To determine what Scheme implementation corresponds to a given source file, Geiser uses
the following algorithm:

1. If the file-local variable geiser-scheme-implementation is defined, its value is used.
A common way of setting buffer-local variables is to put them in a comment near the
beginning of the file, surrounded by -*- marks, as in:

;; -*- geiser-scheme-implementation: guile -*-

2. If you’ve customized geiser-active-implementations so that it’s a single-element
list, that element is used as the chosen implementation.

3. The contents of the file is scanned for hints on its associated implementation. For
instance, files that contain a #lang directive will be considered Racket source code,
while those with a define-module form in them will be assigned to a Guile REPL.

4. The current buffer’s file name is checked against the rules given in geiser-

implementations-alist, and the first match is applied. You can provide your own
rules by customizing this variable, as explained below.

5. If we haven’t been lucky this far and you have customized geiser-default-

implementation to the name of a supported implementation, we’ll follow your
lead.

6. See? That’s the problem of being a smart aleck: one’s always outsmarted by people
around. At this point, geiser-mode will humbly give up and ask you to explicitly choose
the Scheme implementation.

As you can see in the list above, there are several ways to influence Geiser’s guess-
ing by means of customizable variables. The most direct (and most impoverishing) is
probably limiting the active implementations to a single one, while customizing geiser-

implementations-alist is the most flexible (and, unsurprisingly, also the most complex).
Here’s the default value for the latter variable:

(((regexp "\\.scm$") guile)

((regexp "\\.ss$") racket)

((regexp "\\.rkt$") racket))

which describes the simple heuristic that files with ‘.scm’ as extension are by default as-
sociated to a Guile REPL while those ending in ‘.ss’ or ‘.rkt’ correspond to Racket’s
implementation (with the caveat that these rules are applied only if the previous heuristics

Chapter 4: Between the parens 14

have failed to detect the correct implementation, and that they’ll match only if the corre-
sponding implementation is active). You can add rules to geiser-implementations-alist
(or replace all of them) by customizing it. Besides regular expressions, you can also use a
directory name; for instance, the following snippet:

(eval-after-load "geiser-impl"

’(add-to-list ’geiser-implementations-alist

’((dir "/home/jao/prj/frob") guile)))

will add a new rule that says that any file inside my ‘/home/jao/prj/frob’ directory (or,
recursively, any of its children) is to be assigned to Guile. Since rules are first matched,
first served, this new rule will take precedence over the default ones.

A final tip: if you want Geiser to start automatically a REPL for you if it notices that
there’s no one active when it enters geiser-mode, you can customize geiser-mode-start-

repl-p to t.

Switching between source files and the REPL

Once you have a working geiser-mode, you can switch from Scheme source buffers to the
REPL or C-c C-z. Those shortcuts map to the interactive command switch-to-geiser.

If you use a numeric prefix, as in C-u C-c C-z, besides being teleported to the REPL,
the latter will switch to the namespace of the Scheme source file, as if you had used C-c

C-m in the REPL, with the source file’s module as argument; cf. discussion in Section 3.3
[Switching context], page 7. This command is also bound to C-c C-a.

Once you’re in the REPL, the same C-c C-z shortcut will bring you back to the buffer
you jumped from, provided you don’t kill the Scheme process in between. This is why
the command is called switch-to-geiser instead of switch-to-repl, and what makes it really
handy, if you ask me.

If for some reason you’re not happy with the Scheme implementation that Geiser has
assigned to your file, you can change it with C-c C-s, and you probably should take a look
at the previous subsection to make sure that Geiser doesn’t get confused again.

A note about context

As explained before (see Section 1.1 [Modus operandi], page 1), all Geiser activities take
place in the context of the current namespace, which, for Scheme buffers, corresponds to the
module that the Scheme implementation associates to the source file at hand (for instance,
in Racket, there’s a one-to-one correspondence between paths and modules, while Guile
relies on explicit define-module forms in the source file).

Now that we have geiser-mode happily alive in our Scheme buffers and communicating
with the right REPL instance, let us see what it can do for us, besides jumping to and fro.

4.3 Documentation helpers

Autodoc redux

The first thing you will notice by moving around Scheme source is that, every now and
then, the echo area lights up with the same autodoc messages we know and love from our
REPL forays. This happens every time the Scheme process is able to recognise an identifier

Chapter 4: Between the parens 15

in the buffer, and provide information either on its value (for variables) or on its arity and
the name of its formal arguments (for procedures and macros). That information will only
be available if the module the identifier belongs to has been loaded in the running Scheme
image. So it can be the case that, at first, no autodoc is shown for identifiers defined in
the file you’re editing. But as soon as you evaluate them (either individually or collectively
using any of the devices described in Section 4.4 [To eval or not to eval], page 16) their
signatures will start appearing in the echo area.

Autodoc activation is controlled by a minor mode, geiser-autodoc, which you can
toggle with M-x geiser-autodoc-mode, or its associated keyboard shortcut, C-c C-d a.
That /A indicator in the mode-line is telling you that autodoc is active. If you prefer that
it be inactive by default (e.g., because you’re connecting to a really remote scheme and
want to minimize network exchanges), just set geiser-mode-autodoc-p to nil in your
customization files. Even when autodoc mode is off, you can use geiser-autodoc-show,
bound by default to C-c C-d s, to show the autodoc string for the symbol at point.

The way autodoc displays information deserves some explanation. It will first show the
name of the module where the identifier at hand is defined, followed by a colon and the
identifier itself. If the latter corresponds to a procedure or macro, it will be followed by
a list of argument names, starting with the ones that are required. Then there comes a
list of optional arguments, if any, enclosed in parentheses. When an optional argument
has a default value (or a form defining its default value), autodoc will display it after the
argument name. When the optional arguments are keywords, their names are prefixed
with “#:” (i.e., their names are keywords). An ellipsis (. . .) serves as a marker of an
indeterminate number of parameters, as is the case with rest arguments or when autodoc
cannot fathom the exact number of arguments (this is often the case with macros defined
using syntax-case). Another way in which autodoc displays its ignorance is by using an
underscore to display parameters whose name is beyond its powers.

It can also be the case that a function or macro has more than one signature (e.g.,
functions defined using case-lambda, or some syntax-rules macros, for which Geiser has
often the black magic necessary to retrieve their actual arities). In those cases, autodoc
shows all known signatures (using the above rules for each one) separated by a vertical bar
(|).

As you have already noticed, the whole autodoc message is enclosed in parentheses.
After all, we’re talking about Scheme here.

Finally, life is much easier when your cursor is on a symbol corresponding to a plain
variable: you’ll see in the echo area its name, preceded by the module where it’s defined,
and followed by its value, with an intervening arrow for greater effect. This time, there are
no enclosing parentheses (i hope you see the logic in my madness).

You can change the way Geiser displays the module/identifier combo by customizing
geiser-autodoc-identifier-format. For example, if you wanted a tilde surrounded by
spaces instead of a colon as a separator, you would write something like:

(setq geiser-autodoc-identifier-format "%s ~ %s")

in your Emacs initialisation files. There’s also a face (geiser-font-lock-autodoc-
identifier) that you can customize (for instance, with M-x customize-face) to change
the appearance of the text. And another one (geiser-font-lock-autodoc-current-arg)
that controls how the current argument position is highlighted.

Chapter 4: Between the parens 16

Other documentation commands

Sometimes, autodoc won’t provide enough information for you to understand what a func-
tion does. In those cases, you can ask Geiser to ask the running Scheme for further infor-
mation on a given identifier or module.

For symbols, the incantation is M-x geiser-doc-symbol-at-point, or C-c C-d C-d for
short. If the associated Scheme supports docstrings (as, for instance, Guile does), you’ll
be teleported to a new Emacs buffer displaying Geiser’s documentation browser, filled with
information about the identifier, including its docstring (if any; unfortunately, that an
implementation supports docstrings doesn’t mean that they’re used everywhere).

Pressing q in the documentation buffer will bring you back, enlightened, to where you
were. There’s also a handful of other navigation commands available in that buffer, which
you can discover by means of its menu or via the good old C-h m command. And feel free to
use the navigation buttons and hyperlinks that justify my calling this buffer a documentation
browser.

For Racket, which does not support docstrings out of the box, this command will provide
less information, but the documentation browser will display the corresponding contract
when it’s available, as well as some other tidbits for re-exported identifiers.

You can also ask Geiser to display information about a module, in the form of a list
of its exported identifiers, using C-c C-d C-m, exactly as you would do in Chapter 3 [The
REPL], page 6.

In both cases, the documentation browser will show a couple of buttons giving you
access to further documentation. First, you’ll see a button named source: pressing it you’ll
jump to the symbol’s definition. The second button, dubbed manual, will open the Scheme
implementation’s manual page for the symbol at hand. For Racket, that will open your
web browser displaying the corresponding reference’s page (using the HTML browser in
Racket’s configuration, which you can edit in DrRacket’s preferences dialog, or by setting
plt:framework-pref:external-browser directly in ‘~/.racket/racket-prefs.rktd’),
while in Guile a lookup will be performed in the texinfo manual.

For Guile, the manual lookup uses the info indexes in the standard Guile info nodes,
which are usually named “guile” or “guile-2.0”. If yours are named differently, just add
your name to the customizable variable geiser-guile-manual-lookup-nodes.

A list of all navigation commands in the documentation browser is available in Section 5.3
[Documentation browser], page 22.

You can also skip the documentation browser and jump directly to the manual page for
the symbol at point with the command geiser-doc-look-up-manual, bound to C-c C-d

i.

4.4 To eval or not to eval

One of Geiser’s main goals is to facilitate incremental development. You might have noticed
that i’ve made a big fuss of Geiser’s ability to recognize context, by being aware of the
namespace where its operations happen.

That awareness is especially important when evaluating code in your scheme buffers,
using the commands described below. They allow you to send code to the running Scheme
with a granularity ranging from whole files to single s-expressions. That code will be

Chapter 4: Between the parens 17

evaluated in the module associated with the file you’re editing, allowing you to redefine
values and procedures to your heart’s (and other modules’) content.

Macros are, of course, another kettle of fish: one needs to re-evaluate uses of a macro
after redefining it. That’s not a limitation imposed by Geiser, but a consequence of how
macros work in Scheme (and other Lisps). There’s also the risk that you lose track of
what’s actually defined and what’s not during a given session. But, in my opinion, those
are limitations we lispers are aware of, and they don’t force us to throw the baby with the
bathwater and ditch incremental evaluation. Some people disagree; if you happen to find
their arguments convincing, you don’t have to throw away Geiser together with the baby:
M-x geiser-restart-repl will let you restart the REPL as many times as you see fit.

For all of you bearded old lispers still with me, here are some of the commands performing
incremental evaluation in Geiser.

geiser-eval-last-sexp, bound to C-x C-e, will eval the s-expression just before point.
If you use a prefix, as in C-u C-x C-e, besides evaluating it the expression is inserted in the
the buffer.

geiser-eval-definition, bound to C-M-x, finds the topmost definition containing
point and sends it for evaluation. The variant geiser-eval-definition-and-go (C-c
M-e) works in the same way, but it also teleports you to REPL after the evaluation.

geiser-eval-region, bound to C-c C-r, evals the current region. Again, there’s an
and-go version available, geiser-eval-region-and-go, bound to C-c M-r. And, if you
want to extend the evaluated region to the whole buffer, there is geiser-eval-buffer,
bound to C-c C-b and its companion geiser-eval-buffer-and-go, bound to C-c M-b.

For all the commands above, the result of the evaluation is displayed in the minibuffer,
unless it causes a (Scheme-side) error (see Section 4.5 [To err perchance to debug], page 17),
or, for schemes supporting them (such as Racket), the evaluation yields an image, in which
case you’ll see it in popping up in the Geiser debug buffer (if your Emacs runs under the
auspices of a graphical toolkit), or via an external viewer if you set program (see also
Section 3.6 [Seeing is believing], page 9 for more on image support).

At the risk of repeating myself, i’ll remind you that all these evaluations will take place
in the namespace of the module corresponding to the Scheme file from which you’re sending
your code, which, in general, will be different from the REPL’s current module. And, if all
goes according to plan, (re)defined variables and procedures should be immediately visible
inside and, if exported, outside their module.

Besides evaluating expressions, definitions and regions, you can also macro-expand them.
The corresponding key bindings start with the prefix C-c C-m and end, respectively, with
C-e, C-x and C-r. The result of the macro expansion always appears in a pop up buffer.

4.5 To err: perchance to debug

When an error occurs during evaluation, it will be reported according to the capabilities of
the underlying Scheme REPL.

In Racket, you’ll be presented with a backtrace, in a new buffer where file paths locating
the origin of the error are click-able (you can navigate them using the TAB key, and use RET
or the mouse to jump to the offending spot; or invoke Emacs’ stock commands next-error
and previous-error, bound to M-g n and M-g p by default).

http://programming-musings.org/2009/03/29/from-my-cold-prying-hands/
http://blog.racket-lang.org/2009/03/drscheme-repl-isnt-lisp.html

Chapter 4: Between the parens 18

The Racket backtrace also highlights the exception type, making it click-able. Following
the link will open the documentation corresponding to said exception type. Both the error
and exception link faces are customizable (geiser-font-lock-error-link and geiser-

font-lock-doc-link).

By default, Geiser will tele-transport your pointer to the debug buffer: if you prefer to
stay in the source buffer, set geiser-debug-jump-to-debug-p to nil. And if, in addition,
you don’t even want to see the error trace, customize geiser-debug-show-debug-p, again,
to nil.

On the other hand, Guile’s reaction to evaluation errors is different: it enters the de-
bugger in its REPL. Accordingly, the REPL buffer will pop up if your evaluation fails in a
Guile file, and the error message and backtrace will be displayed in there, again click-able
and all. But there you have the debugger at your disposal, with the REPL’s current module
set to that of the offender, and a host of special debugging commands that are described in
Guile’s fine documentation.

In addition, Guile will sometimes report warnings for otherwise successful evaluations.
In those cases, it won’t enter the debugger, and Geiser will report the warnings in a debug
buffer, as it does for Racket. You can control how picky Guile is reporting warnings by
customizing the variable geiser-guile-warning-level, whose detailed docstring (which
see, using, e.g. C-h v) allows me to offer no further explanation here. The customization
group geiser-guile is also worth a glance, for a couple of options to fine-tune how Geiser
interacts with Guile’s debugger (and more). Same thing for racketeers and geiser-racket.

4.6 Jumping around

This one feature is as sweet as it is easy to explain: M-. (geiser-edit-symbol-at-point)
will open the file where the identifier around point is defined and land your point on its
definition. To return to where you were, press M-, (geiser-pop-symbol-stack). This
command works also for module names: Geiser first tries to locate a definition for the
identifier at point and, if that fails, a module with that name; if the latter succeeds, the file
where the module is defined will pop up.

Sometimes, the underlying Scheme will tell Geiser only the file where the symbol is
defined, but Geiser will use some heuristics (read, regular expressions) to locate the exact
line and bring you there. Thus, if you find Geiser systematically missing your definitions,
send a message to the mailing list, and we’ll try to make the algorithm smarter.

You can control how the destination buffer pops up by setting geiser-edit-symbol-

method to either nil (to open the file in the current window), ’window (other window in
the same frame) or ’frame (in a new frame).

4.7 Geiser writes for you

No self-respecting programming mode would be complete without completion. In geiser-
mode, identifier completion is bound to M-TAB, and will offer all visible identifiers starting
with the prefix before point. Visible here means all symbols imported or defined in the
current namespace plus locally bound ones. E.g., if you’re at the end of the following
partial expression:

(let ((default 42))

mailto:geiser-users@nongnu.org

Chapter 4: Between the parens 19

(frob def

and press M-TAB, one of the possible completions will be default.

After obtaining the list of completions from the running Scheme, Geiser uses the standard
Emacs completion machinery to display them. That means, among other things, that partial
completion is available: just try to complete d-s or w-o-t-s to see why this is a good thing.
Partial completion won’t work if you have disabled it globally in your Emacs configuration:
if you don’t know what i’m talking about, never mind: Geiser’s partial completion will work
for you out of the box.

If you find the M modifier annoying, you always have the option to activate geiser-

smart-tab-mode, which will make the TAB key double duty as the regular Emacs indentation
command (when the cursor is not near a symbol) and Geiser’s completion function. If you
want this smarty pants mode always on in Scheme buffers, customize geiser-mode-smart-
tab-p to t.

Geiser also knows how to complete module names: if no completion for the prefix at
point is found among the currently visible bindings, it will try to find a module name that
matches it. You can also request explicitly completion only over module names using M-‘

(that’s a backtick).

Besides completion, there’s also this little command, geiser-squarify, which will toggle
the delimiters of the innermost list around point between round and square brackets. It is
bound to C-c C-e [. With a numeric prefix (as in, say, M-2 C-c C-e [), it will perform that
many toggles, forward for positive values and backward for negative ones.

Chapter 5: Cheat sheet 20

5 Cheat sheet

In the tables below, triple chords always accept a variant with the third key not modified
by Control; e.g., geiser-autodoc-show is bound both to C-c C-d C-s and C-c C-d s.

5.1 Scheme buffers

Key Command Description
C-c C-z geiser-mode-switch-to-repl Switch to REPL
C-c C-a geiser-mode-switch-to-repl-

and-enter

Switch to REPL and current mod-
ule (also C-u C-c C-z)

C-c C-s geiser-set-scheme Specify Scheme implementation
for buffer

M-. geiser-edit-symbol-at-point Go to definition of identifier at
point

M-, geiser-pop-symbol-stack Go back to where M-. was last
invoked

C-c C-e C-m geiser-edit-module Ask for a module and open its file
C-c C-e C-l geiser-add-to-load-path Ask for a directory and add to

Scheme load path

C-c C-e C-[geiser-squarify Toggle between () and [] for cur-
rent form

C-c C-\ geiser-insert-lambda Insert greek lambda or, with pre-
fix, a lambda form

C-M-x geiser-eval-definition Eval definition around point
C-c M-e geiser-eval-definition-and-

go

Eval definition around point and
switch to REPL

C-x C-e geiser-eval-last-sexp Eval sexp before point
C-c C-r geiser-eval-region Eval region
C-c M-r geiser-eval-region-and-go Eval region and switch to REPL
C-c C-b geiser-eval-buffer Eval buffer
C-c M-b geiser-eval-buffer-and-go Eval buffer and switch to REPL

C-c C-m C-x geiser-expand-definition Macro-expand definition around
point

C-c C-m C-e geiser-expand-last-sexp Macro-expand sexp before point
C-c C-m C-r geiser-expand-region Macro-expand region

C-c C-k geiser-compile-current-

buffer

Compile and load current file

M-g n, C-x ‘ next-error Jump to the location of next error
M-g p previous-error Jump to the location of previous

error

Chapter 5: Cheat sheet 21

C-c C-d C-d geiser-doc-symbol-at-point See documentation for identifier
at point

C-c C-d C-s geiser-autodoc-show Show signature or value for iden-
tifier at point in echo area

C-c C-d C-m geiser-doc-module See a list of a module’s exported
identifiers

C-c C-d C-i geiser-doc-look-up-manual Look up manual for symbol at
point

C-c C-d C-a geiser-autodoc-mode Toggle autodoc mode

C-c < geiser-xref-callers Show callers of procedure at point
C-c > geiser-xref-callees Show callees of procedure at point

M-TAB completion-at-point Complete identifier at point
M-‘, C-. geiser-completion--complete-

module

Complete module name at point

5.2 REPL

Key Command Description
C-c C-z switch-to-geiser Start Scheme REPL, or jump to

previous buffer

C-c M-o geiser-repl-clear-buffer Clear REPL buffer
C-c C-k geiser-repl-interrupt Interrupt REPL evaluation (sig-

nalling inferior scheme)

C-c C-q geiser-repl-exit Kill Scheme process
M-. geiser-edit-symbol-at-point Edit identifier at point
TAB geiser-repl-tab-dwim Complete, indent, or go to next

error

S-TAB (backtab) geiser-repl--previous-error Go to previous error in the REPL
buffer

M-TAB completion-at-point Complete indentifier at point
M-‘, C-. geiser-completion--complete-

module

Complete module name at point

C-c C-r geiser-add-to-load-path Ask for a directory and add to
Scheme load path

M-p, M-n (comint commands) Prompt history, matching current
prefix

C-c M-p, C-c M-n (comint commands) Previous/next prompt inputs
C-c C-m switch-to-geiser-module Set current module
C-c C-i geiser-repl-import-module Import module into current

namespace

C-c C-d C-d geiser-doc-symbol-at-point See documentation for symbol at
point

Chapter 5: Cheat sheet 22

C-c C-d C-i geiser-doc-look-up-manual Look up manual for symbol at
point

C-c C-d C-m geiser-repl--doc-module See documentation for module
C-c C-d C-a geiser-autodoc-mode Toggle autodoc mode

5.3 Documentation browser

Key Command Description
TAB, n forward-button Next link
S-TAB, p backward-button Previous link
N geiser-doc-next-section Next section
P geiser-doc-previous-section Previous section
f geiser-doc-next Next page
b geiser-doc-previous Previous page
k geiser-doc-kill-page Kill current page and go to previ-

ous or next

g, r geiser-doc-refresh Refresh page
c geiser-doc-clean-history Clear browsing history
., M-. geiser-doc-edit-symbol-at-

point

Edit identifier at point

z geiser-doc-switch-to-repl Switch to REPL
q View-quit Bury buffer

Chapter 6: No hacker is an island 23

6 No hacker is an island

Andy Wingo, Geiser’s first user, has been a continuous source of encouragement and sug-
gestions, and keeps improving Guile and heeding my feature requests.

The nice thing about collaborating with Andreas Rottmann over all these years is that
he will not only make your project better with insightful comments and prodding: he’ll
send you patches galore too.

Ludovic Courts, #geiser’s citizen no. 1, joined the fun after a while, and has since then
been a continuous source of encouragement, ideas and bug reports.

Michael Wilber convinced me that image support for Racket was not only fun, but easy,
with the best argument: actual code!

Daniel Hackney and Grant Rettke created the first ELPA packages for Geiser and taught
me to fish.

Diogo F. S. Ramos is Geiser’s most indefatigable user and bug reporter, and the mailing
list has been a far less lonely place since he came.

Aleix Conchillo has been my favourite spammer, beta tester and patch sender during
more years and for more projects than i can remember.

Eduardo Cavazos’ contagious enthusiasm has helped in many ways to keep Geiser alive,
and he’s become its best evangelist in R6RS circles.

Eli Barzilay took the time to play with an early alpha and made many valuable sugges-
tions, besides answering all my ’how do you in PLT’ questions.

Matthew Flatt, Robby Findler and the rest of the PLT team did not only answer my
inquiries, but provided almost instant fixes to the few issues i found.

Thanks also to the PLT and Guile communities, for showing me that Geiser was not
only possible, but a pleasure to hack on. And to the Slime hackers, who led the way.

Joining the fun

• For questions, praise, critique and anything else Geiser, do not hesitate to drop an
email to our list, (@ geiser-users (. nongnu org)): no subscription required. Check the
list page for more information or browse the archives. The list is also accessible via
Gmane as gmane.lisp.scheme.geiser.

• You can submit bug reports either to the mailing list or to our bug tracker over at
Github.

• If you only need to hear about Geiser on new releases, the News page and its Atom
feed are probably what you’re looking for.

• The Freenode IRC channel #geiser is the Geiserati’s meeting point in cyberspace.

mailto:geiser-users@nongnu.org
http://lists.nongnu.org/mailman/listinfo/geiser-users
http://lists.nongnu.org/mailman/listinfo/geiser-users
http://lists.nongnu.org/archive/html/geiser-users/
http://gmane.org
http://dir.gmane.org/gmane.lisp.scheme.geiser
https://github.com/jaor/geiser/issues
http://savannah.nongnu.org/news/?group=geiser
https://savannah.nongnu.org/news/atom.php?group=geiser
https://savannah.nongnu.org/news/atom.php?group=geiser

Index 24

Index

,
,enter vs. enter! . 7

A
ac-geiser . 5
ask on kill, don’t . 11
autocomplete . 5
autodoc customized . 15
autodoc explained . 15
autodoc for variables . 15
autodoc, disabling . 11
autodoc, in scheme buffers . 14
autodoc, in the REPL . 8
autostart REPL . 14

B
backtraces . 17
bug tracker . 23
byte-compilation . 4

C
company . 5
completion for module names 19
completion in scheme buffers 18
completion, at the REPL . 8
connect to server . 6
current module . 1
current module, change . 8
current module, in REPL . 7

D
disabling autodoc . 15
docstrings, maybe . 16
documentation for symbol . 16

E
ELPA . 3
error buffer . 17
evaluating images . 17
evaluation . 17
external image viewer . 9

F
faces, in the REPL . 6

G
geiser-mode . 12
geiser-mode commands . 12
gmane . 23
Guile info nodes . 16
Guile’s REPL server . 6
GUILE LOAD COMPILED PATH 10
GUILE LOAD PATH . 10

H
help on identifier . 9
host, default . 11

I
image cache . 9
image display . 17
image support . 9
image viewer . 9
incremental development . 16
incremental development, evil 17
incremental development, not evil 17
IRC channel . 23

J
jump, at the REPL . 9
jumping customized . 18
jumping in scheme buffers . 18

M
mailing list . 23
manual autodoc . 15
module exports . 9
modus operandi . 1

N
news feed . 23

O
opening manual pages . 16

P
paredit . 5
partial completion . 19
peace and quiet . 11
philosophy . 16
PLTCOLLECTS . 10

Index 25

port, default . 11

Q
quack . 5
quick install . 3

R
Racket’s REPL server . 6
recursion . 24
remote connections . 7
remote REPL . 6
REPL . 6
REPL commands . 7
REPL customization . 9
REPL, faces . 6

S
scheme binary . 10
scheme executable path . 10
scheme file extensions . 12
scheme implementation, choosing 10, 13
scheme init file . 10

scheme load path . 10
smart tabs . 19
start REPL, automatically . 14
startup timeout . 10
supported versions . 3
swanking . 1
switching schemes . 14
switching to module . 14
switching to REPL . 14
switching to source . 14

T
thanks . 23
timeout . 10
to err is schemey . 17

U
use the source, Luke . 3
useless wretch . 12

V
Version checking . 10
versions supported . 3

	Introduction
	Modus operandi
	Showing off

	Installation
	Must needs
	The easy and quick way
	Installing from source
	Friends

	The REPL
	Starting the REPL
	First aids
	Switching context
	Completion and error handling
	Autodoc and friends
	Seeing is believing
	Customization and tips

	Between the parens
	Activating Geiser
	The source and the REPL
	Documentation helpers
	To eval or not to eval
	To err: perchance to debug
	Jumping around
	Geiser writes for you

	Cheat sheet
	Scheme buffers
	REPL
	Documentation browser

	No hacker is an island
	Index

