
sterm - A serial multi port terminal
i

sterm - A serial multi port terminal

sterm - A serial multi port terminal
ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

sterm - A serial multi port terminal
iii

Contents

1 Prerequisites 1

2 Running sterm.py 1

3 Configuring sterm.py 1

3.1 Overview . 1

3.2 The [CONFIG] Section . 1

3.3 The [Device] Section . 2

3.4 The [Macro] Section . 2

3.5 Assigning Macros . 3

3.6 Using Smart Macros . 3

sterm - A serial multi port terminal
iv

Abstract

While developping and debugging wireless applications, it is usefull to connect two or more nodes via a serial interface with a
PC in order to watch and analyze the debugging output. The programm sterm.py is (yet another) terminal application written in
Python/TKinter, that provides this multiport feature.

sterm - A serial multi port terminal
1 / 4

1 Prerequisites

In order to run sterm.py an installed version of Python (required is version 2.x but not 3.x) and the module pyserial is
needed. A short decription how to install and upgrade Python on your PC can be found under Installing and Upgrading Python.
If you will use a transceiver board with an USB interface, of course the correct USB driver must be loaded.

2 Running sterm.py

The program wuart/sterm.py is simply started by the command:

python sterm.py

If the configuration file sterm.cfg is not found in the current directory, a default version of this file is created and must be
modified, to reflect your configuration.

With the command python sterm.py -h a list of available command line options is displayed.

Usage:
python sterm.py [OPTIONS]

Options:
-h, --help

show this help message
-v, --version

show version number
-c FILE, --config FILE

load config file, default value +sterm.cfg+
if FILE is not existing, an annotated version
is generated and the tool is exited.

3 Configuring sterm.py

3.1 Overview

The setup is configured with the file sterm.cfg. This file is written in WIN.INI format and consists of the following sections.

[CONFIG]
The section name "CONFIG" is reserved for the global configuration of sterm.py.

[mydevice]
A device section defines the serial port settings and other configuration parameters. It can have a
arbitary but unique (within sterm.cfg) name.

[mymacro]
A macros section defines either a text or a smart macro. It can have a arbitary but unique (within
sterm.cfg) name.

3.2 The [CONFIG] Section

The CONFIG section holds the global configuration information.

[CONFIG]
devices = list of enabled devices
plugins = list of files with smart macro functions
macros = macros enable globally for all devices

http://www.python.org
http://uracoli.nongnu.org/gettingstarted.html#_installing_and_upgrading_python

sterm - A serial multi port terminal
2 / 4

3.3 The [Device] Section

The example file sterm.cfg defines three devices: coord, dev1, dev2, dev3. Each devices is described within a configuration
section, which has the following contents:

[coord]
type = serial
port = /dev/ttyS4
baudrate = 9600
logname = coord.log
logmode = w
echo = 1
log = 1
connect = 1
macros = mycommand_01 mycommand_02

The entries have the following meaning:

• type: currently only value "serial" is usefull.

• port: the name of the serial port, under Windows probably COMx

• baudrate: the serial baudrate to be used (in bit/s, e.g. 9600, 19200, 57600)

• logname: name of the generated logfile

• logmode: "a" for append to the file or "w" to write file from start

• log: a 1 means that writing to the logfile is enabled right at startup, a 0 means that you need to click the "log" button to open
the logfile.

• echo: 1 local terminal echo is enabled at startup

• connect: 1 means that the serial connection is opened at programm startup

• macros: list of macros for this device.

After defining a device, it needs to be listed in the "[CONFIG]" section in the keyword "devices", e.g.

[CONFIG]
devices = coord dev1 dev2 dev3
....

3.4 The [Macro] Section

The program sterm.py provides two types of macros: a) normal text macros and b) smart macros, which are implemented by
python functions.

Here are two examples for a text macros:

[qbf]
text = The quick brown fox jumps over the lazy dog.

[peli]
text = A wonderful bird is the pelican,

His bill will hold more than his belican,
He can take in his beak
Enough food for a week
But I’m damned if I see how the helican!

sterm - A serial multi port terminal
3 / 4

The "qbf" macro sends a single line to the serial device and the "peli" macro sends multiple lines to the serial device.

Smart macros are configured by the keywords "function" and "params". The "function" keyword holds the name of a function
that is defined in a plugin file. The "params" keyword is a python expression that creates a parameter dictionary the function is
called with.

[mycommand_01]
function = mycommand
params = dict(nbdevices = 1, channel = 0, chanpg=5, test=3)

3.5 Assigning Macros

The macros are buried behind the button "Macros" as a drop down list. The macro assignement can be global in the "[CONFIG]"
section or local in the "[mydevice]" device specification section.

Here are two assignment examples:

[CONFIG]
devices = coord dev1 dev2 dev3
plugins = plugin.py
macros = qbf

[mydevice]
type = serial
....
macros = mycommand_01

The macro "qbf" is assigned globally to all defined devices, where the macro "mycommand_01" is just assinged to the device
"mydevice".

3.6 Using Smart Macros

Writing Smart Macros Smart Macros are implemented by a python function. Here is an example:

import time
def mycommand(devices, nbdevices, test, channel, chanpg, pan = 1):

print "test=%d, channel=%d, chanpg=%d, test=%d, pan=%d" % \
(test, channel, chanpg, test, pan)

cmd = "%02d%02d%1d%02d" % (channel, chanpg, pan, test)
print "Run: %s" % cmd
devices[’coord’].write("Sc%s" % cmd)
if nbdevices >=1:

time.sleep(1)
devices[’dev1’].write("S1%s" % cmd)

if nbdevices >=2:
time.sleep(1)
devices[’dev2’].write("S2%s" % cmd)

if nbdevices >=3:
time.sleep(1)
devices[’dev3’].write("S3%s" % cmd)

The first parameter "devices" of the function mycommand() holds a dictionary of all defined serial devices. By means of the
device function "write" the smart macro function can send data to all available devices. All other parameters (e.g. nbdevices,
test, channel, chanpg, pan = 1) are function specific and given by the params keyword in the configuration file.

Loading Smart Macros Smart macros are loaded in the "[CONFIG]" section of the config file just by writing the file name (with
a path component) behind the keywords "plugins".

sterm - A serial multi port terminal
4 / 4

[CONFIG]
...
plugins = plugin.py
...

	Prerequisites
	Running sterm.py
	Configuring sterm.py
	Overview
	The [CONFIG] Section
	The [Device] Section
	The [Macro] Section
	Assigning Macros
	Using Smart Macros

